SURFACE WATER MANAGEMENT SYSTEM LANDFILL 3

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

Client: <u>Matrix</u> Project: <u>McCl</u>	ellan Final Cover Systems Project/Proposal #:	GR3762 Task #: 05
TITLE OF COMPUTATIONS _Q	uantity Estimation Calculation Package	
COMPUTATIONS BY:	Signature Jul F. Muni- Printed Name Jill F. Roboski and Title Engineer	<u>9 Fcb 2007</u> DATE
ASSUMPTIONS AND PROCEDURE CHECKED BY: (Peer Reviewer)	Signature Leslie M. Griffin and Title Project Engineer	9 FEB 2007 DATE
COMPUTATIONS CHECKED BY:	Signature Leslie M. Griffin and Title Project Engineer	9 F&B 2007 DATE
COMPUTATIONS BACKCHECKED BY: riginator)	Signature Printed Name and Title Engineer	<u>9 Feb 2007</u> DATE
APPROVED BY: (PM or Designate)	Signature Printed Name Michael J. Monteleone and Title Principal	9 FB07 DATE
APPROVAL NOTES:		
REVISIONS (Number and initial all re-	visions)	· · · ·
NO. SHEET DAT		APPROVAL

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

Client: <u>Matrix</u> Project: <u>M</u>	IcClellan Final Cover Systems Project/Pi	roposal #: GR3762 Task #:05
TITLE OF COMPUTATIONS	Design & Analysis Of The Surface Wat No.3	er Management System For Landfill
COMPUTATIONS BY:	Signature	<u>09/29/2006</u> DATE
	Printed NameMehmet Iscimenand TitleSenior Staff Engineer	DATE
ASSUMPTIONS AND PROCED CHECKED BY:	URES Signature Victoria & Uplan	1014/06
(Peer Reviewer)	Printed Name Victoria Cheplak	DATE
COMPUTATIONS CHECKED BY:	and Title Engineer Signature Victoria & Cleplan	(0/4/06
	Printed Name Victoria Cheplak and Title Engineer	DATE
COMPUTATIONS BACKCHECKED BY:	Signature	10/08/06
(Originator)	Printed NameMehmet Iscimenand TitleSenior Staff Engineer	DATE
APPROVED BY: (PM or Designate)	Signature Michael J. Monteleone and Title Principal	<u> </u>
APPROVAL NOTES:	, , , , , , , , , , , , , , , , , , ,	
REVISIONS (Number and initial a	all revisions)	
NO. SHEET	DATE BY CHECK	KED BY APPROVAL

GEOSYNTEC CONS	ULTANTS		PAGE OF
Vritten by: <u>Mehmet Iscimen</u>	Date: 09/13/06	Reviewed by: _Victoria Cheplak	Date: 10/04/06
lient: <u>Matrix</u> Proje	ct: <u>McClellan Final Cover Systems</u>	Project/Proposal No.: <u>GR3</u>	7 <u>62</u> Task No.: 0 <u>5</u>
	TABLE OF C	<u>ONTENTS</u>	
EXECUTIVE SUM	MARY		3
PURPOSE			4
SURFACE WATE	R MANAGEMENT SYST	EM - OVERVIEW	4
DESIGN APPROA	ЛСН		5
-	ODOLOGY ent Watershed Analysis nent Analysis of Surface W	ater Management System	5 5 6
SOFTWARE			6
 Rainfall I Rainfall I Hydrolog Curve Nu Nodal Ne 	ATION PARAMETERS Distribution Depths ic Soil Groups (HSG) mbers (CN) twork Diagram s of Subareas		6 6 7 7 7 8
	Diversion Structures and Do	EMENT SYSTEM COMPON wnchute	ENTS 8 8 10
COMPUTATIONS	USING HYDROCAD [™]		10
COMPARISON O	F PRE- VERSUS POST-	DEVELOPMENT DISCHAR	GES 10
REFERENCES			11

GEOS	YNTEC CONSULTANTS					PAGE _	OF
Written by:	Mehmet Iscimen	_Date:	09/13/06	_Reviewed by:	Victoria Cheplak		Date: 10/04/06

Client: <u>Matrix</u>

Project: <u>McClellan Final Cover Systems</u> Pr

TABLE OF CONTENTS (Continued)

List of Attachments

- 1. Topographic Map (Pre-Development)
- 2. Surface Water Management System: Grading Plan
- 3. Pre-Development Watershed Delineation Map
- 4. Post-Development Watershed Delineation Map
- 5. Rainfall Distribution and Rainfall Depths
- 6. Hydrologic Soil Groups
- 7. Curve Numbers
- 8. HydroCADTM Nodal Network Diagrams
- 9. Properties Of Subareas
- 10. Stormwater Diversion Berm Outlet Structures
- 11. Ponded Water Elevations During 25-Year, 24-Hour Storm
- 12. Computations Using HydroCADTM: Pre-Development
- 13. Computations Using HydroCADTM HydroCAD: Post-Development

GEOSYNTEC C	ONSULTANTS			PAGE _	OF
Written by: <u>Mehmet Iscimen</u>	1		_Reviewed by: <u>Victoria Cheplak</u>		_Date: 1 <u>0/04/06</u>
Client: Matrix	Project: McClellan Fina	l Cover Systems	Project/Proposal No.:	GR3762 1	ask No.: 05

EXECUTIVE SUMMARY

In this calculation package, surface water management system design for Landfill No.3 (LF3) has been evaluated. Design criteria was established based on the "Alabama Handbook for Erosion Control, Sediment Control, and Stormwater Management on Construction Sites", discussions with the City of Anniston, and general practice experience related to stormwater management system designs. The criteria included the comparison of stormwater runoff from the site under pre-development and post–development conditions and the function of the stormwater management system under the 25-year, 24-hour design storm.

In order to analyze and design the stormwater management system, a variety of parameters including hydrologic soil types, rainfall distribution and depths, and topographical information such as slopes, elevations, and areas, were evaluated for the site. Using the methodology and procedures described in Soil Conservation Service's Technical Release-55 [SCS TR-55, 1986], storm water runoff rates and volumes were calculated.

Results of this analysis indicate that the peak stormwater discharge rate from the site under post-development conditions with the stormwater management system is less than peak stormwater discharge rate under pre-development conditions. The stormwater management system consists of stormwater diversion berms and their appurtenances, as well as a new eastern perimeter channel, an existing western perimeter channel, and a downchute to convey the flow.

GEOSYNTEC CONS	ULTANTS		PAGE OF	
Written by: <u>Mehmet Iscimen</u>	Date: <u>09/13/06</u>	Reviewed by: <u>Victoria Cheplak</u>	Date: 1 <u>0/04/06</u>	
Client: Matrix Project	ct: McClellan Final Cover Systems	Project/Proposal No.:	<u>GR3762</u> Task No.: 05	

DESIGN & ANALYSIS OF THE SURFACE WATER MANAGEMENT SYSTEM

PURPOSE

The purpose of this calculation package is to present the analysis and design of the surface water management system for the final cover system at the Landfill 3 site (LF3) at the former Fort McClellan (McClellan) in Anniston, Alabama. The following are the specific goals of this package:

- establish the design criteria;
- o calculate the pre-development peak discharges leaving the site;
- design the components of the surface water management system, including final cover system, diversion berms and appurtenances, perimeter channel and downchute;
- o calculate the post-development peak discharges leaving the site; and
- compare the calculated post-development discharges with the calculated predevelopment discharges.

SURFACE WATER MANAGEMENT SYSTEM - OVERVIEW

The topographic map of LF3 and the plan view of the proposed surface water management system are provided in Attachments 1 and 2, respectively. The cover system will have slopes of generally 1 to 2 percent, fitting to the existing topography and stormwater routing practices. Side slopes (perimeter slopes) of the cover system will be 33 percent (i.e., 3H:1V) until natural ground surface elevations are reached. The cover system forms a ridge between two peaks located at the southeast corner towards the center to western boundary of the landfill. The access road is generally located along the ridge. The cover system design allows storm water runoff to flow approximately equally to east and west sides of the landfill with the exception of a small area on the south side of the landfill draining to the wetlands located south of the site.

Stormwater runoff is managed by diversion berm/channel structures distributed over the cover system of LF3. These structures are formed by 1.5-foot high benches constructed on the cover system. The runoff collected in the diversion structures will be detained within the bermed channels and released over time by 6-inch diameter, horizontal, corrugated metal pipes. The number of the pipes at each structure is dependent upon the storm runoff volume, peak discharge rate, and available storage volume.

GEOSYNTEC CONSULTANTS			PAGE _	OF
Written by: <u>Mehmet Iscimen</u> Da	Date: <u>09/13/06</u>	_Reviewed by: <u>Victoria Cheplak</u>		Date: 10/04/06
Client: <u>Matrix</u> Project: <u>McClellan Final Co</u>	over Systems	Project/Proposal No.:	<u>GR3762</u> T	ask No.: <u>05</u>

Structures located on the western side of LF3 will drain to the existing channel located adjacent to the western perimeter of the landfill. Structures located on the eastern side of LF3 will drain to a new perimeter channel to be constructed adjacent to the eastern boundary of the landfill. This channel is designed with a V-shaped cross-section, 33 percent (3H:1V) west side slopes, 50 percent (2H:1V) east side slopes, and 2-feet depth and will join the existing western perimeter channel near the northeast corner of LF3. Flow from one set of the eastern diversion structures, located near the center of LF3, is directed to a riprap downchute on the east slope, which in turn directs the flow into the new perimeter channel.

DESIGN APPROACH

The surface water management system for the LF3 is designed to meet requirements of the "Alabama Handbook for Erosion Control, Sediment Control, and Stormwater Management on Construction Sites" (herein referred as ASWCC [2003]) [Alabama Soil and Water Conservation Committee, 2003]. ASWCC [2003] does not specifically recommend a certain storm event for design purposes, however it does state: "In many localities, a 10-year design storm is specified to preserve the effectiveness of downstream drainage structures which were originally designed to pass a 10-year pre-development storm. Other localities require that larger storms (i.e., 50-100 year events) must be detained and released at a controlled rate to reduce the downstream effects of major storms." Based on this statement, discussions with the City of Anniston, and general practice experience related to stormwater management system designs, the following criteria are selected for the stormwater management system design:

- Design, construct, operate, and maintain a runoff management system to collect and control at least the peak flow volume resulting from a 25-year, 24-hour design storm event;
- Design holding facilities (e.g., detention basins) associated with run-on and runoff control systems to detain at least the water volume resulting from a 25-year, 24-hour design storm event with 0.5-feet of freeboard; and
- Design conveyance facilities (e.g., perimeter channels) to provide a minimum of 0.25 feet of freeboard for calculated peak flows from the 25-year 24-hour design storm.

ANALYSIS METHODOLOGY

Pre-development Watershed Analysis

Attachment 1 presents the topographic map for the general site vicinity and the boundary of LF3. Attachment 3 presents the delineation of the natural watersheds in the vicinity of the site

GEOSYNTEC C	ONSULTANTS			PAGE OF
Written by: <u>Mehmet Iscimen</u>	1		Reviewed by:Victoria Cheplak	Date: 1 <u>0/04/06</u>
Client: Matrix	Project: McClellan Fina	al Cover Systems	Project/Proposal No.:	GR3762 Task No.: 05

on the topographic map. These drainage areas are the basis for the pre-development watershed analysis.

Post-development Analysis of Surface Water Management System

Attachment 2 presents the topographic map for the general site vicinity of LF3 for the postdevelopment conditions. The map also identifies the locations of the diversion structures, the downchute, and the perimeter channels.

Attachment 4 presents a Schematic Plan of the surface water management system and the delineation of subareas, reaches (i.e., perimeter channels), and ponds (i.e., detention areas caused by the diversion structures) on the cover system. The post-development analysis of the surface water management system is based on the parameters calculated/estimated from this plan.

SOFTWARE

Storm water discharges are estimated using the computer program "HydroCADTM" [HydroCADTM 7.1, 2005]. The program uses hydrology procedures presented in Soil Conservation Services' TR-55 [SCS TR-55, 1986]. Hydrographs generated within the computer program are routed through a user specified network of reaches using documented hydraulic routing techniques.

MAJOR CALCULATION PARAMETERS

- **Rainfall Distribution**: Attachment 5 [SCS TR-55, 1986] shows the location of the site on the rainfall distribution map of the United States. The site is located in Calhoun County, Alabama, which is categorized by SCS Type II Rainfall Distribution.
- **Rainfall Depths:** Attachment 5 also presents the site location and the rainfall depth for the 2-year and 25-year, 24-hour design storms. The 2-year rainfall depth is used for calculating the times of concentration for hydrologic modeling. The rainfall depths are shown in the following table.

GEOSYNTEC CONSULTANTS	PAGE OF
Written by: Mehmet Iscimen Date: 09/13/06 Reviewed by: Victoria Cheplak	Date: 1 <u>0/04/06</u>
Client: <u>Matrix</u> Project: <u>McClellan Final Cover Systems</u> Project/Proposal No.: <u>O</u>	GR3762 Task No.: 05

Return	Duration	Design Rainfall
Period	(hours)	Depth
(years)		(inches)
2	24	3.9
25	24	6.7

- **Hydrologic Soil Groups (HSG):** Attachment 6 presents the regional soils maps for the vicinity of LF3 and Borrow Area No.2 located southeast of Reilly Airfield. Major soil units found within the areas of interest and the corresponding HSGs are listed in the Table A6-1 in Attachment 6. The LF3 vicinity is composed of HSG B, HSG C, and HSG D soils. Therefore, HSG B was conservatively used for the pre-development analyses performed in this package. For the final cover system, it is anticipated that a local area adjacent to Reilly Airfield southeast of the site will be used as a borrow source. This area consists of soils characterized as HSG B. Therefore, for the purposes of hydrologic modeling performed in this package, HSG B is assumed for the post-development analyses.
- **Curve Numbers (CN):** CNs were selected based on Table 2.2a and 2.2c of SCS TR-55, 1986. The following table summarizes the CNs chosen for the analyses performed in this package. The complete version of both tables can be found in Attachment 7.

Area Description	Condition	HSG	CN
Pre-Development Conditions of the LF3	Woods – Good Condition	В	55
LF3 Cover System	Open Space, Good Hydrologic Condition (Grass Cover>75%)	В	61

- **Nodal Network Diagram:** Attachment 8 presents a diagram of the nodal network used in HydroCADTM for the pre-development and post-development analysis.
 - <u>Pre-development Nodal Network:</u> In the pre-development scenario (identified in Attachment 3), the site is divided into four subcatchments routed to the western perimeter channel or the eastern perimeter. The two perimeter drainage paths ultimately join near the northeast corner of LF3.

GEOSYNTEC CONSULTANTS	PAGE OF	_
Written by: <u>Mehmet Iscimen</u> Date: <u>09</u>	13/06 Reviewed by: Victoria Cheplak Date: 10/04/06	
Client: <u>Matrix</u> Project: <u>McClellan Final Cover Syst</u>	ems Project/Proposal No.: <u>GR3762</u> Task No.: <u>05</u>	

- <u>Post-development Nodal Network:</u> Subcatchments as depicted in the Schematic Surface Water Management Plan (Attachment 4) were generally routed to diversion structures which discharge into the perimeter channels. The perimeter channels ultimately join near the northeast corner of LF3.
- **Properties of Subareas:** Attachment 9 presents roperties of the subareas used in HydroCADTM for the pre- and post-development analysis. The computed area (acres) of each subarea, curve number, and computations for times of concentration are included in Attachment 9.

Computations for travel time for sheet flow are performed using the equation for Manning's kinematic solution [SCS TR-55, 1986]:

$$T_t = \frac{0.007(nL)^{0.8}}{(P)^{0.5} S^{0.4}}$$

where, T_t =travel time (hr), n=Manning's roughness coefficient, n=0.15 for short grass and n=0.80 for woods with dense underbrush, L=flow length (ft), P=2-year, 24-hour rainfall depth (inches), and S=land slope (ft/ft).

After a maximum of 300 feet, sheet flow is assumed to become shallow concentrated flow (i.e., upland flow). Travel times for shallow concentrated flow are estimated using the methodology presented in TR-55 [SCS TR-55, 1986]:

$$T_t = \frac{L}{K S^{0.5}}$$

where, T_t = travel time (seconds), L = flow length (ft), S = land slope (ft/ft), K = 7.0 for short grass pasture and K = 2.5 for forest with heavy litter.

DESIGN OF SURFACE WATER MANAGEMENT SYSTEM COMPONENTS

Stormwater Diversion Structures and Downchute

Surface water runoff at LF3 will be controlled by storm water diversion structures located on the landfill. The diversion structures will be formed by benches constructed over the cover system. The benches will have a v-shaped cross-sectional geometry, with 1.5-feet depth, 1-foot width at the top, and 33% (3H:1V) side slopes. They will function to break the continuous

GEOSYNTEC CONSULTANTS	PAGE	OF
Written by: <u>Mehmet Iscimen</u> Date: <u>09/13/06</u> Rev	viewed by: <u>Victoria Cheplak</u>	Date: 1 <u>0/04/06</u>
Client: <u>Matrix</u> Project: <u>McClellan Final Cover Systems</u>	Project/Proposal No.: <u>GR3762</u>	

slope along the cover system, dividing the cover system into distinct subcatchments, and then divert and detain the runoff from each individual subcatchment. The detained runoff will pond in the diversion structure due to 6-inch diameter corrugated metal spillway pipes serving as outlet pipes which will convey the flow to the perimeter channels.

One set of diversion structures (designated as 5P in HydroCADTM) located towards the center of the landfill, will function slightly differently, in that the flow from the spillway pipe will first drain to a downchute and then to the eastern perimeter channel. The downchute is designed with a V-shaped cross-section, 33-percent side slopes and 1.5-foot depth. It has a constant longitudinal slope of 1 percent. Velocities in the channel do not exceed 1.3 feet/second for the 25-year, 24-hour storm event.

The storage capacities of the diversion structures were designed based on the cover system grades and required storage at each subcatchment. They are designed to provide a minimum of 0.5-feet of freeboard for calculated peak flows from the 25-year, 24-hour design storm. The following table summarizes the number of the spillway pipes at each diversion structure, depth of flow and available freeboard from the 25-year, 24-hour storm as designated in the HydroCADTM model. As shown in the table, the diversion structure design meets the minimum freeboard criteria. Details of outlet structures can be seen on Attachment 10. Ponded water elevations from a 25-year 24-hour storm can be seen in Attachment 11.

Diversion Structure Designation	Number of Spillway Pipes	Depth of Flow in the Diversion Structure (feet)	Available Freeboard (feet)
5P	2	0.58	0.92
6P	2	0.64	0.86
7P	2	0.51	0.99
9P	2	0.55	0.95
10P	2	0.58	0.92
11P	2	0.80	0.70
12P	4	0.93	0.57
13P	2	0.40	1.10

Riprap protection is recommended at the (i) diversion structure outlets and connections to the perimeter channels and (ii) lining the downchute, since erosion control is critical to long term performance of the final cover system.

For the diversion structure outlets and connections, Figure OP-2 from ASWCC [2003] was used to estimate required riprap size and apron length. Accordingly, d_{50} is found to be 3 inches whereas the maximum apron length is found to be 10 feet.

GEOSYNTEC C	ONSULTANTS			PAGE OF
Written by: <u>Mehmet Iscimen</u>	1		_Reviewed by: <u>Victoria Cheplak</u>	Date: 1 <u>0/04/06</u>
Client: Matrix	Project: McClellan Fina	l Cover Systems	Project/Proposal No.:	GR3762 Task No.: 05

For the lining of the downchute, the following equation was used to calculate the riprap size required (ASWCC [2003]):

$$d_{50} = [QS_0^{0.58} / (3.93^*10^{-2})]^{(1/1.89)}$$

where, d_{50} =minimum median riprap diameter (in), Q=discharge through the downchute from 25-year, 24-hour storm (cfs), and S₀=longitudinal slope (ft/ft). Required d_{50} for the downchute is found to be 1.1 inches.

The riprap protection sizing calculations are presented in Attachment 10. Details of the downchute and diversion berm intersection and the diversion berm intersection and pipe outlet can be found on Drawings C-14 and C-15, Surface Water Management Details 1 and 2.

Eastern Perimeter Channel

The new eastern perimeter channel is designed with a V-shaped cross-section, 33 percent (3H:1V) west and 50 percent (2H:1V) east side slopes and 2-foot depth. It has a constant longitudinal slope of 0.5 percent. Velocities in the channel do not exceed 2.1 feet/second for the 25-year, 24-hour storm event; therefore, grass lining is appropriate. The peak depth in the channel is 0.98 feet, corresponding to 1.02 feet freeboard, satisfying the design criteria.

COMPUTATIONS USING HydroCADTM

Calculations were performed using HydroCADTM for the input parameters discussed in the previous section for the 25-year, 24-hour design storm. The computer program results for the pre-development and post-development analyses are presented in Attachments 11 and 12.

COMPARISON OF PRE- VERSUS POST-DEVELOPMENT DISCHARGES

The following table summarizes the results from Attachments 11 and 12 for pre- and post-development discharges from the site for the 25-year, 24-hour design storm. As shown in the table, the post-development discharge with the storm water management system described above is less than the pre-development discharge at the nodal point for the design storm that was considered in this analysis.

<u>GeoSynti</u>	<u>ec Consult</u>	ANTS		PAG	E OF
Written by: <u>Mehmet</u>	Iscimen	Date:	<u>9/13/06</u> Reviewed by: <u>Vic</u>	toria Cheplak	Date: 1 <u>0/04/06</u>
Client: <u>Matrix</u>	Project: <u>Mc(</u>	<u>Clellan Final Cover Sy</u>	stems Project	/Proposal No.: <u>GR3762</u>	Task No.: 05
	Design	Design	Peak	Peak	
	Rainfall	Rainfall	Pre-Development	Post-Development	
	Event	Depth	Discharge	Discharge	
		(inch)	(At Nodal Point)	(At Nodal Point)	

6.7

REFERENCES

25-year,

24-hour

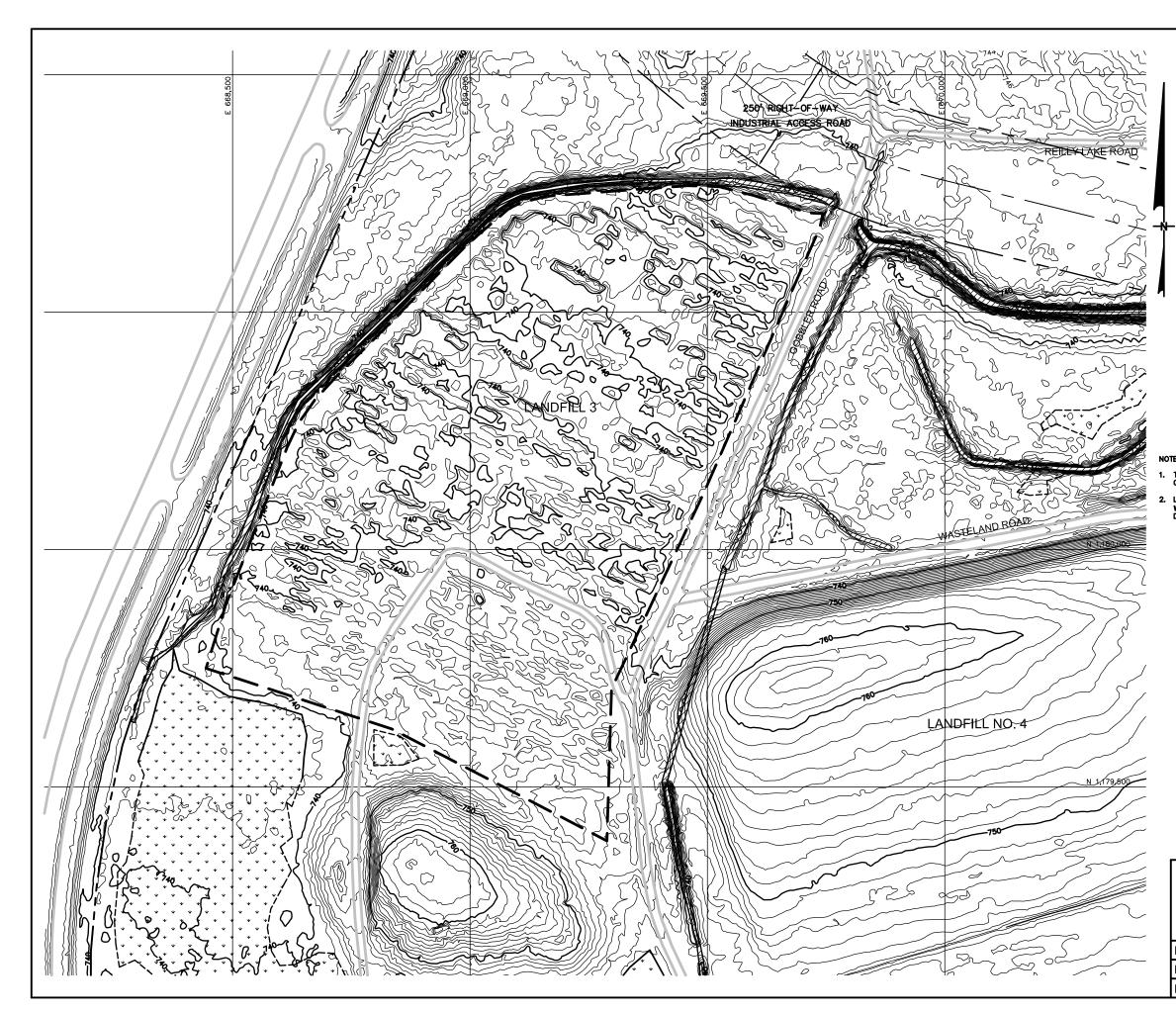
Alabama Soil and Water Conservation Committee (ASWCC), "Alabama Handbook for Erosion Control, Sediment Control, and Stormwater Management on Construction Sites", 2003.

(cfs)

8.11

(cfs)

7.22


Chadwick, Andrew and Morfett, John, "*Hydraulics in Civil and Environmental Engineering*", 2nd edition, E&FN Spon, 1993, London.

HydroCAD, "*HydroCAD*TM: Stormwater Modeling System, Version 7", HydroCAD Software Solutions LLC., 2^{nd} ed., Chocorua, New Hampshire, 2004.

SCS, "*TR-55 Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55)*", United States Department of Agriculture, Soil Conservation Service, 2nd ed., Washington, D.C., 1986.

Topographic Map (Pre-Development)

		LEGEND	
	EXISTING (ROUND ELEVATION	(FEET) (NOTE 1)
	EXISTING F	ROAD	
—	LANDFILL/	FILL AREA PERIMET	er limit
	INDUSTRIAI	L ACCESS ROAD RI	GHT-OF-WAY LIMIT
<u> </u>	INDUSTRIA	L ACCESS ROAD C	ENTERLINE
·····	JURISDICTI	onal wetland (Su	IRVEYED BOUNDARY) (NOTE 2)
/////	JURISDICTI	ONAL WATERS OF	THE UNITED STATES (NOTE 2)
	SURFACE	WATER FLOW DIREC	TION
APHY DEVE	ELOPED USING LIDA	r technology pei	RFORMED BY OPTIMAL
ics of hui	NTSVILLE, ALABAMA	ON 17 DECEMBER	2005.
ns of Jur D Determin	RISDICTIONAL WETLA	NDS AND WATERS AND FILL AREAS,"	WERE OBTAINED FROM "FINAL BY SHAW ENVIRONMENTAL, INC
7 NOVEMB	ER 2003.		
		200'	400'

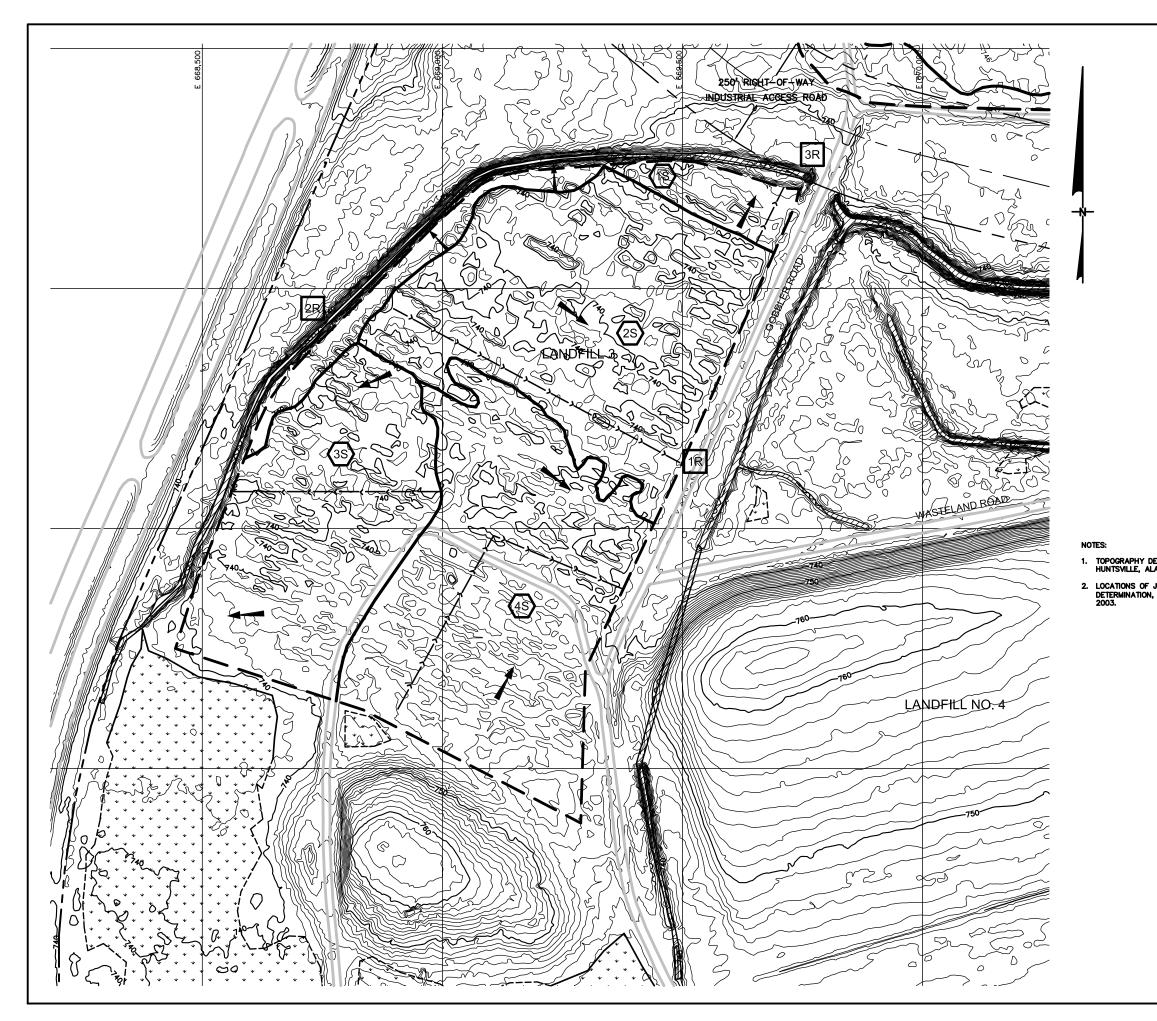
0 200' 400' SCALE IN FEET

ATTACHMENT 1 -TOPOGRAPHIC MAP (PRE-DEVELOPMENT)

GEOSYNTEC CONSULTANTS				
KENNESAW, GA				
SCALE:	1"=200'			
FILE NO.	3762SM05			
DOCUMENT NO. FIGURE NO. 1				
	KENNESAW, G SCALE: FILE NO.			

Surface Water Management System: Grading Plan

	LEGEND
and a survey of the second second	EXISTING GROUND ELEVATION (FEET) (NOTE 1)
AND TOTAL STREAM STREAM STREAM STREAM	EXISTING ROAD
·	LIMIT OF WORK
	FINISHED GRADE ELEVATION (FEET)
	INDUSTRIAL ACCESS ROAD RIGHT-OF-WAY LIMIT
	INDUSTRIAL ACCESS ROAD CENTERLINE
	CENTERLINE OF DOWNCHUTE
	CENTERLINE OF DIVERSION BERM
	JURISDICTIONAL WETLAND (SURVEYED BOUNDARY) (NOTE 2)
(1/////////////////////////////////////	JURISDICTIONAL WATERS OF THE UNITED STATES (NOTE 2)
	SURFACE WATER/DIVERSION BERM FLOW DIRECTION


LOCATIONS OF JURISDICTIONAL WETLANDS AND WATERS WERE OBTAINED FROM "FINAL WETLAND DETERMINATION, LANDFILLS AND FILL AREAS," BY SHAW ENVIRONMENTAL, INC. DATED 17 NOVEMBER 2003.

ATTACHMENT 2 -SURFACE WATER MANAGEMENT SYSTEM: **GRADING PLAN**

<u></u>		ITEC CON KENNESAW, G	SULTANTS
DATE: OCTO	BER 2006	SCALE:	1"=200'
PROJECT NO.	GR3762	FILE NO.	3762SM06
DOCUMENT NO.		FIGURE NO.	2

Pre-Development Watershed Delineation Map

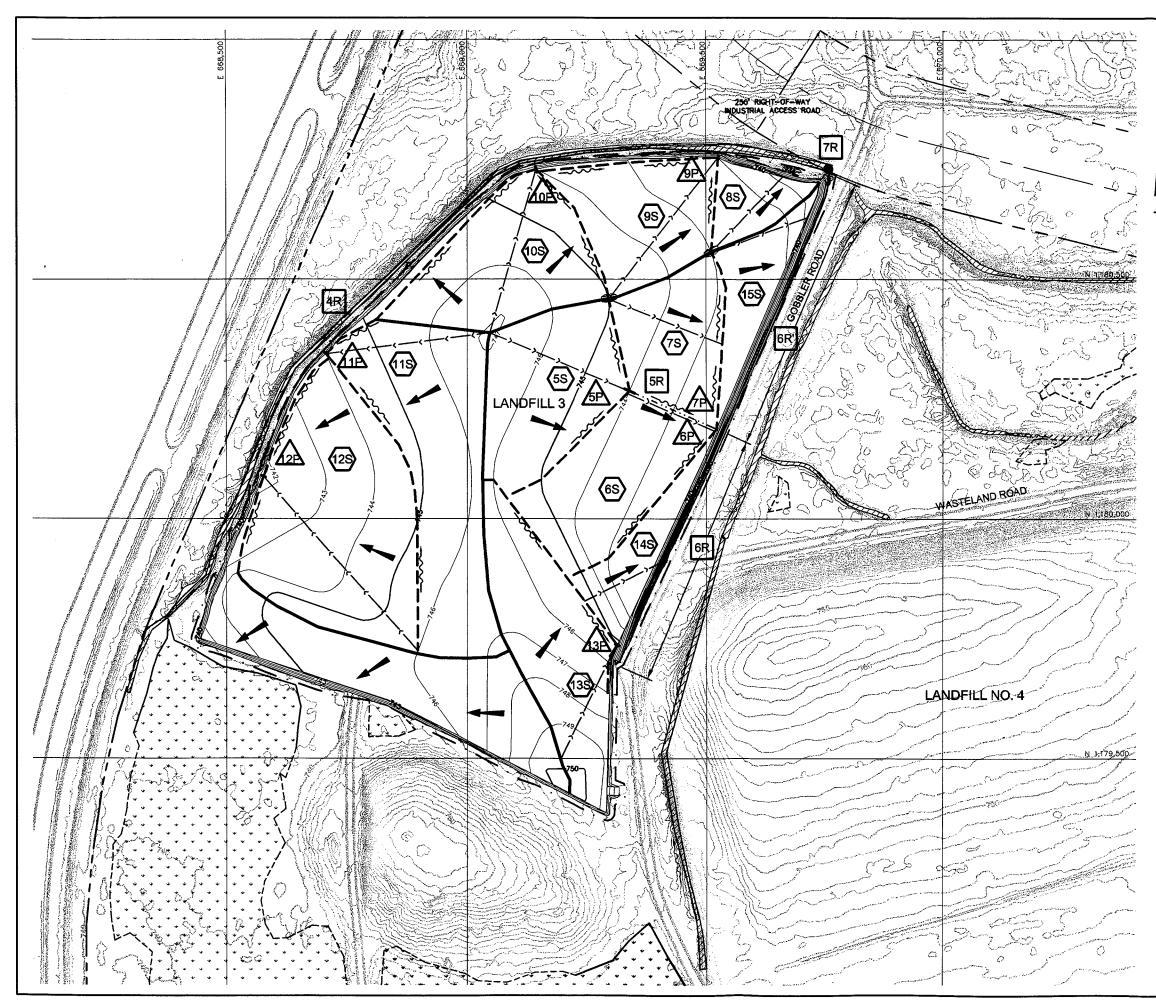

	LEGEND
	EXISTING GROUND ELEVATION (FEET) (NOTE 1)
	EXISTING ROAD
	INDUSTRIAL ACCESS ROAD CENTERLINE
* *	✓ JURISDICTIONAL WETLAND (SURVEYED BOUNDARY) (NOTE 2)
	JURISDICTIONAL WATERS OF THE UNITED STATES (NOTE 2)
	SUBCATCHMENT BOUNDARY
·	
	Sold ACE WAILER FLOW DIRECTION
	SUBCATCHMENT DESIGNATION
1R	REACH DESIGNATION
	- FLOW DIRECTION
٢	NODAL POINT
	G LIDAR TECHNOLOGY PERFORMED BY OPTIMAL GEOMATICS OF DECEMBER 2005.
	WETLANDS AND WATERS WERE OBTAINED FROM "FINAL WETLAND
I, LANDFILLS AND	D FILL AREAS," BY SHAW ENVIRONMENTAL, INC. DATED 17 NOVEMBER
	o 200' 400'
	SCALE IN FEET
	ATTACHMENT 3 -
	PRE-DEVELOPMENT
	WATERSHED
	DELINEATION MAP
	
	_
	GeoSyntec Consultants
	KENNESAW, GA
DATE	
PROJ	JECT NO. GR3762 FILE NO. 3762SM07
PROJ	

FIGURE NO.

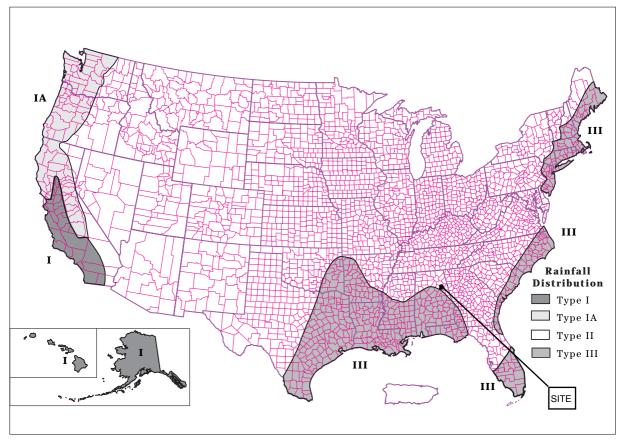
3

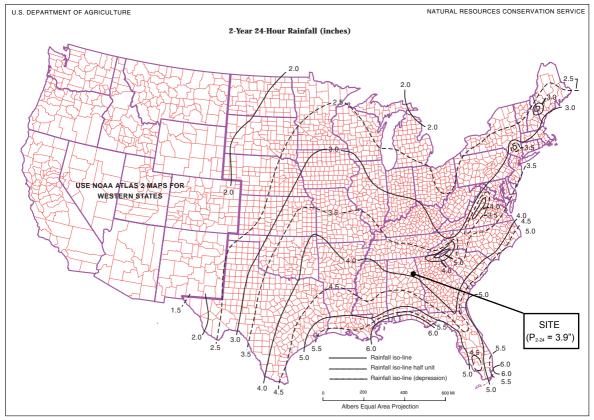
DOCUMENT NO.

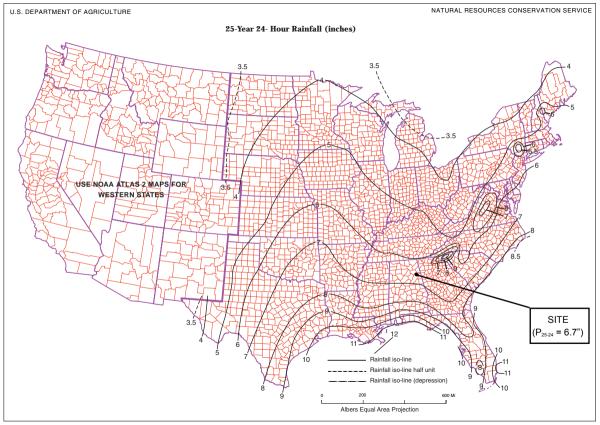
Post-Development Watershed Delineation Map

	LEGEND
neroser ZXI jan wasan	EXISTING GROUND ELEVATION (FEET) (NOTE 1)
492557000000575700005957000055557000 4920757000075757000507870005757	EXISTING ROAD
	LANDFILL/FILL AREA PERIMETER LIMIT
750	FINISHED GRADE ELEVATION (FEET)
	RIGHT-OF-WAY LIMIT
	INDUSTRIAL ACCESS ROAD CENTERLINE
- ··· - ··-	CENTERLINE OF DOWNCHUTE
	CENTERLINE OF DIVERSION BERM
[<u></u>]	JURISDICTIONAL WETLAND (SURVEYED BOUNDARY) (NOTE 2)
	JURISDICTIONAL WATERS OF THE UNITED STATES (NOTE 2)
	SURFACE WATER FLOW DIRECTION
	DIVERSION BERM FLOW DIRECTION
	SUBCATCHMENT BOUNDARY
	FLOW PATH FOR T _C CALCULATION
(1S)	SUBCATCHMENT DESIGNATION
1R	REACH DESIGNATION
<u>5</u> P	POND DESIGNATION
	FLOW DIRECTION
•	NODAL POINT

NOTES:

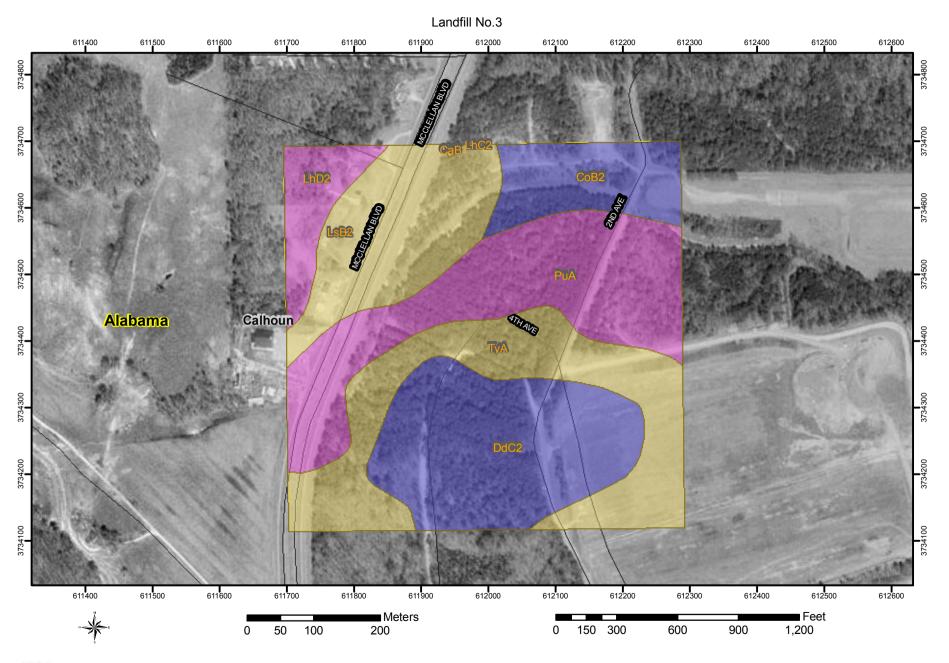

- 1. TOPOGRAPHY DEVELOPED USING LIDAR TECHNOLOGY PERFORMED BY OPTIMAL GEOMATICS OF HUNTSVILLE, ALABAMA ON 17 DECEMBER 2005.
- LOCATIONS OF JURISDICTIONAL WETLANDS AND WATERS WERE OBTAINED FROM "FINAL WETLAND DETERMINATION, LANDFILLS AND FILL AREAS," BY SHAW ENVIRONMENTAL, INC. DATED 17 NOVENBER 2003.

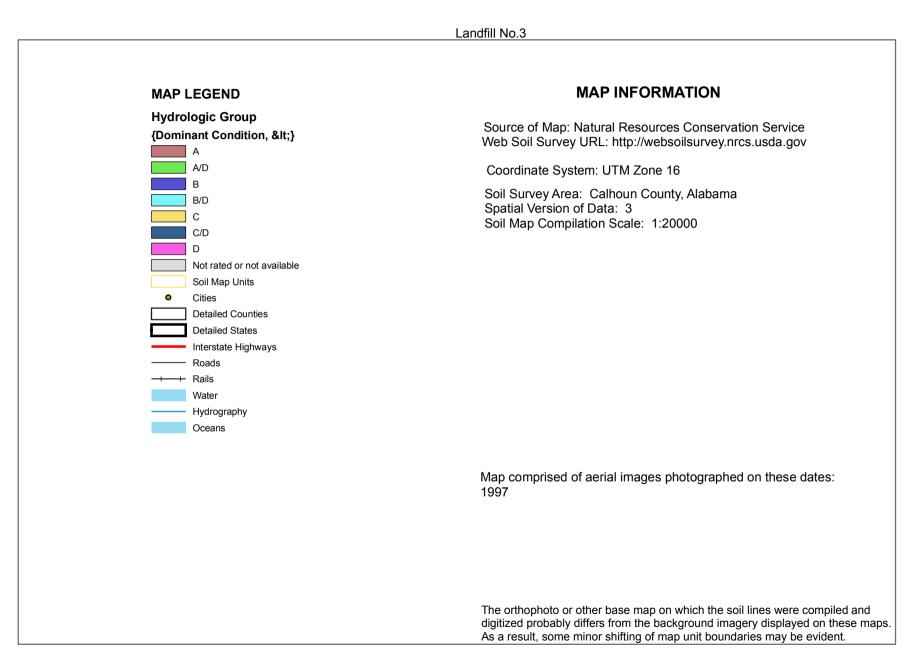



ATTACHMENT 4 -POST-DEVELOPMENT WATERSHED DELINEATION MAP

GEOSYNTEC CONSULTANTS KENNESAW, GA				
DATE: OCTOBER 2006	SCALE: 1"=200'			
PROJECT NO. GR3762	FILE NO. 3762SM08			
DOCUMENT NO.	FIGURE NO. 4			

Rainfall Distribution and Rainfall Depths




Hydrologic Soil Groups

HYDROLOGIC GROUP RATING FOR CALHOUN COUNTY, ALABAMA

USDA Natural Resources Conservation Service

HYDROLOGIC GROUP RATING FOR CALHOUN COUNTY, ALABAMA

Tables - Hydrologic Group

Soil Survey Area Map Unit Symbol	Map Unit Name	Rating	Total Acres in AOI	Percent of AOI
CaB	Camp silt loam, 2 to 6 percent slopes	С	0.1	0.1
CoB2	Cumberland gravelly loam, 2 to 6 percent slopes eroded	В	7.7	9.1
DdC2	Decatur and Cumberland loams 6 to 10 percent slopes, eroded	В	19.5	22.9
LhC2	Lehew-Montevallo soils, 2 to 10 percent slopes, eroded	D	0.0	0.0
LhD2	Lehew-Montevallo soils, 10 to 15 percent slopes, eroded	D	4.5	5.3
LsB2	Locust gravelly fine sandy loam, 2 to 6 percent slopes, eroded	С	13.5	15.9
PuA	Purdy silt loam, 0 to 2 percent slopes	D	20.8	24.4
ТуА	Tyler silt loam, 0 to 2 percent slopes	С	19.0	22.3

Summary by Map Unit - Calhoun County, Alabama

Description - Hydrologic Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are placed into four groups A, B, C, and D, and three dual classes, A/D, B/D, and C/D. Definitions of the classes are as follows:

The four hydrologic soil groups are:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

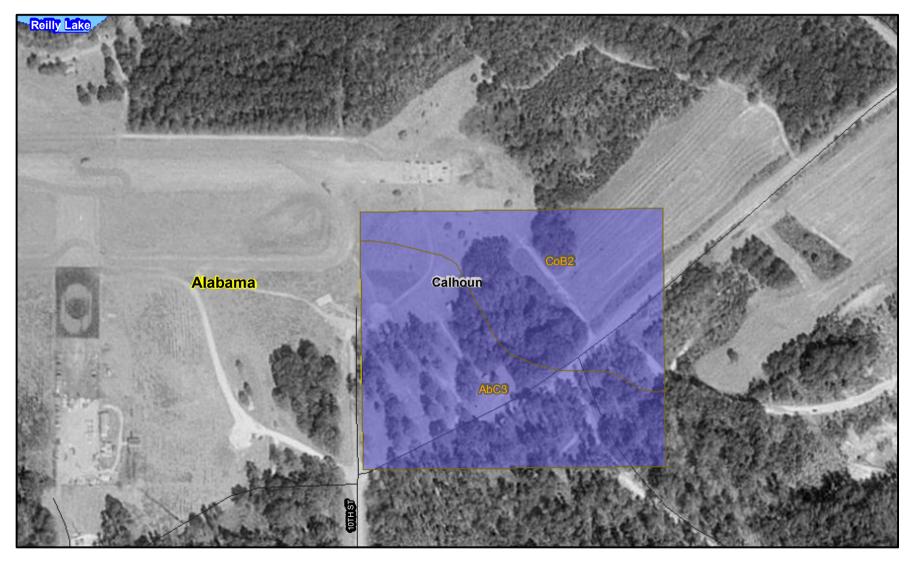
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Parameter Summary - Hydrologic Group

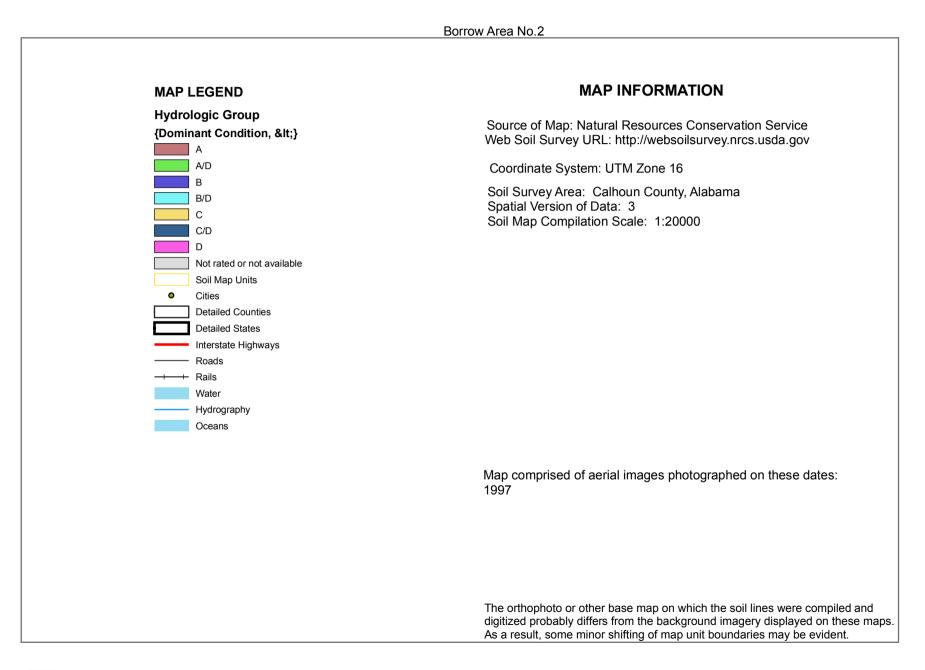
Aggregation Method: Dominant Condition


Component Percent Cutoff:

Tie-break Rule: Lower

Landfill No.3

HYDROLOGIC GROUP RATING FOR CALHOUN COUNTY, ALABAMA


Borrow Area No.2

USDA Natural Resources Conservation Service

HYDROLOGIC GROUP RATING FOR CALHOUN COUNTY, ALABAMA

Tables - Hydrologic Group

Summary by Map Unit - Calhoun County, Alabama

Soil Survey Area Map Unit Symbol	Map Unit Name	Rating	Total Acres in AOI	Percent of AOI
AbC3	Anniston gravelly clay loam 6 to 10 percent slopes, severely eroded	В	11.4	56.1
CoB2	Cumberland gravelly loam, 2 to 6 percent slopes eroded	В	9.0	43.9

Description - Hydrologic Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are placed into four groups A, B, C, and D, and three dual classes, A/D, B/D, and C/D. Definitions of the classes are as follows:

The four hydrologic soil groups are:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only soils that are rated D in their natural condition are assigned to dual classes.

Parameter Summary - Hydrologic Group

Aggregation Method: Dominant Condition

Component Percent Cutoff:

Tie-break Rule: Lower

TABLE A6-1

MAJOR TYPES OF SOILS FOR RUN-ON AREAS IN THE SOIL MAP

Soil Unit ⁽¹⁾	Soil Unit Description ⁽¹⁾	Location	Hydrologic Soil Group
CoB2	Cumberland Gravelly Loam	LF3 & Borrow Area No.2	В
PuA	Purdy Silt Loam	LF3	D
ТуА	Tyler Silt Loam	LF3	С
DdC2	Decatur and Cumberland Loams	LF3	В
LsB2	Locust Gravelly Fine Sandy Loam	LF3	С
AbC3	Anniston Gravelly Clay Loam	Borrow Area No.2	В

Notes:

(1) Map symbols, map soil unit names, and hydrologic soil groups for the soil survey area obtained from Natural Resources Conservation Service (NRCS) Web Soil Survey Site with the web address http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed on 26 September 2006).

Curve Numbers

Table 2-2aRunoff curve numbers for urban areas 1/2

Cover description		Curve numbers for hydrologic soil group					
Cover description	Average percent		ityurologic	son group			
		р	C	р			
Cover type and hydrologic condition	Α	В	С	D			
Fully developed urban areas (vegetation established)							
Open space (lawns, parks, golf courses, cemeteries, etc.) ^{3/} :							
Poor condition (grass cover < 50%)		68	79	86	89		
Fair condition (grass cover 50% to 75%)		49	69	79	84		
Good condition (grass cover > 75%)		39	61	74	80		
Impervious areas:	•••••	50		1 1	00		
Paved parking lots, roofs, driveways, etc.			FINAL COVER	J			
(excluding right-of-way)		98	98	98	98		
Streets and roads:	•••••	50	50	50	50		
Paved; curbs and storm sewers (excluding							
right-of-way)		98	98	98	98		
Paved; open ditches (including right-of-way)		98 83	98 89	98 92	98 93		
	85 76	89 85					
Gravel (including right-of-way)	76 72	89 82	89 87	91 89			
Dirt (including right-of-way)	•••••	12	82	87	89		
Western desert urban areas:		60	88	05	00		
Natural desert landscaping (pervious areas only) 4/	•••••	63	77	85	88		
Artificial desert landscaping (impervious weed barrier,							
desert shrub with 1- to 2-inch sand or gravel mulch		0.0	0.0	0.0	0.0		
and basin borders)		96	96	96	96		
Urban districts:	~~	00			~		
Commercial and business		89	92	94	95		
Industrial	72	81	88	91	93		
Residential districts by average lot size:							
1/8 acre or less (town houses)		77	85	90	92		
1/4 acre		61	75	83	87		
1/3 acre		57	72	81	86		
1/2 acre		54	70	80	85		
1 acre		51	68	79	84		
2 acres	12	46	65	77	82		
Developing urban areas							
Newly graded areas							
(pervious areas only, no vegetation) ^{5/}		86	91	94			
Idle lands (CN's are determined using cover types							
similar to those in table 2-2c).							

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Table 2-2cRunoff curve numbers for other agricultural lands 1/

Cover description		Curve numbers for hydrologic soil group					
Cover type	Hydrologic condition	А	В	C	D		
Pasture, grassland, or range—continuous	Poor	68	79	86	89		
forage for grazing. 2/	Fair	49	69	79	84		
	Good	39	61	74	80		
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78		
Brush—brush-weed-grass mixture with brush	Poor	48	67	77	83		
the major element. 3/	Fair	35	56	70	77		
	Good	30 4/	48	65	73		
Woods—grass combination (orchard	Poor	57	73	82	86		
or tree farm). $5/$	Fair	43	65	76	82		
	Good	32	58	72	79		
Woods. 6/	Poor	45	66	77	83		
	Fair	36	60	73	79		
	Good	30 4∕	55	70	77		
Farmsteads—buildings, lanes, driveways, and surrounding lots.	_	59	E-DEVELOPMENT 74	82	86		

¹ Average runoff condition, and I_a, = 0.2S.

² *Poor:* <50%) ground cover or heavily grazed with no mulch.

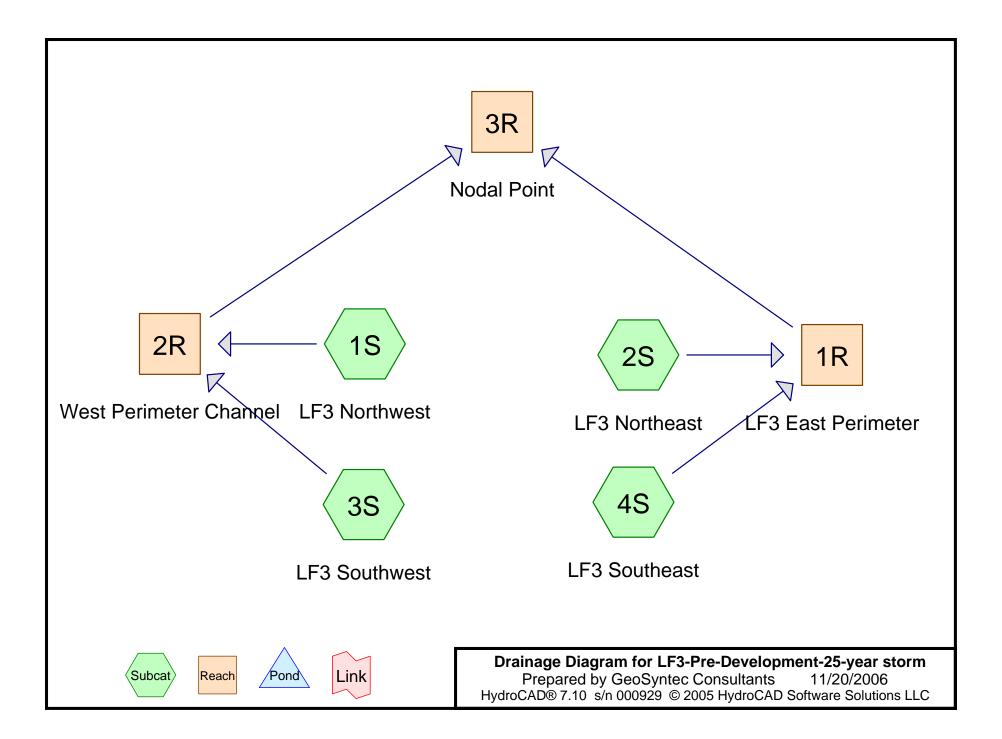
Fair: 50 to 75% ground cover and not heavily grazed.

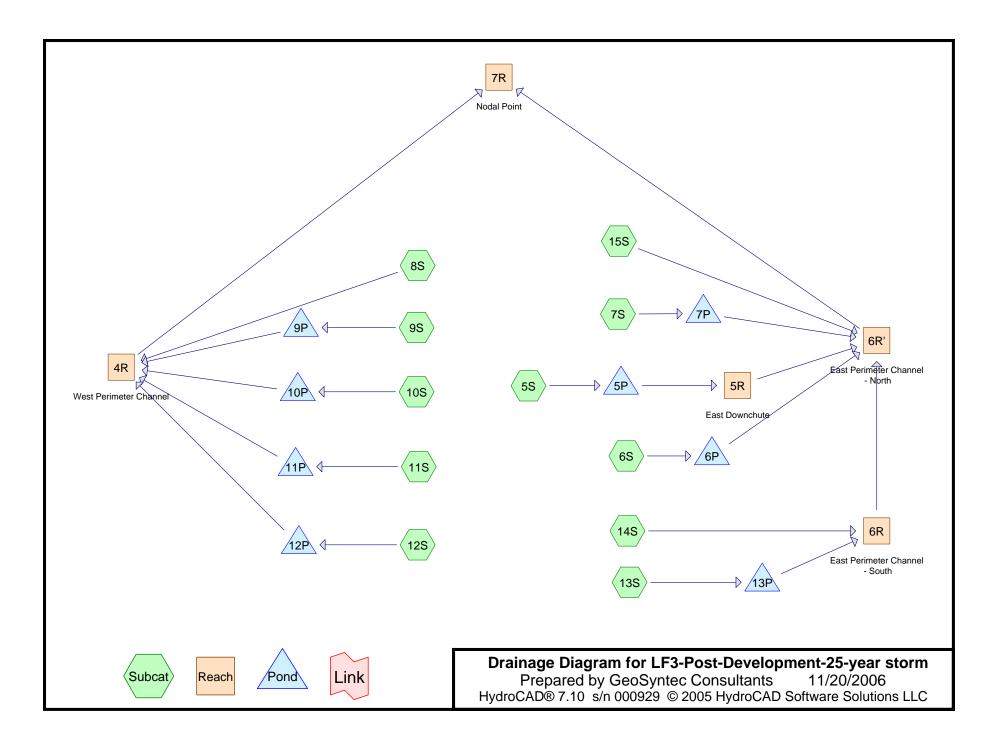
Good: > 75% ground cover and lightly or only occasionally grazed.

³ *Poor*: <50% ground cover.

Fair: 50 to 75% ground cover.

Good: >75% ground cover.


⁴ Actual curve number is less than 30; use CN = 30 for runoff computations.


⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

⁶ Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

ATTACHMENT 8

HydroCADTM Nodal Network Diagrams

ATTACHMENT 9

Properties of Subareas

LANDFILL COVER SYSTEM

LANDFILL NO.3

SURFACE WATER MANAGEMENT SYSTEM CALCULATIONS

AREAS, AND TIMES OF CONCENTRATION (Tc) CALCULATIONS FOR PRE- AND POST-DEVELOPMENT CONDITIONS

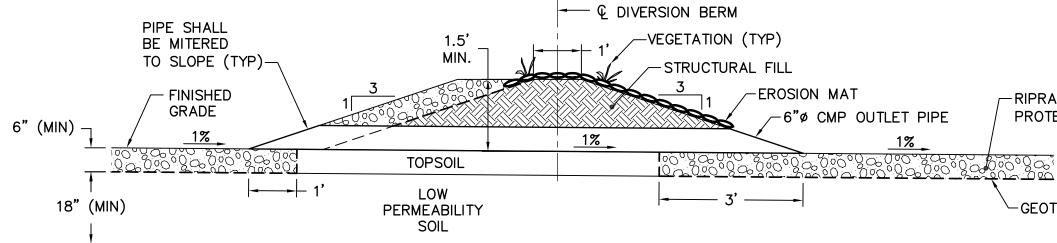
2-year, 24-hr Design Rainfall Depth, $P_{2-24} = 3.90$ inches

No.	SUBAREA DESIGNATION in HydroCAD Description	AREA (acres)	CURVE NUMBER				-			1 224								
INO.	Description				SHFFT	FLOW 1		SHA	LLOW CONCE	NTRATED F	I OW 1	SHA	LLOW CONCE	NTRATED F		Travel T	Times (T _t) and T _c Ca	lculation
				Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	T _t (Sheet)	T_t (Shallow Conc.)	T _c
1S	LF3 Northwest	1.71	55	(ft)		Coefficient, n	(ft/ft)	(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	(min)	(min)	(min)
	(Pre-development)			150	Woods: Dense underbrush	0.800	0.001									139.8		139.8
	1		1	1				1										
				SHEET FLOW 1			1	LLOW CONCE			SHALLOW CONCENTRATED FLOW 2				Travel Times (T_t) and T_c Calculation			
28	LF3 Northeast (Pre-development)	7.80	55	Length (ft)	Surface Desc.	Manning Coefficient, n	Slope (ft/ft)	Length (ft)	Surface Desc.	Slope (ft/ft)	Avg. Velocity (ft/s)	Length (ft)	Surface Desc.	Slope (ft/ft)	Avg. Velocity (ft/s)	T _t (Sheet) (min)	T _t (Shallow Conc.) (min)	T _c (min)
				300	Woods: Dense underbrush	0.800	0.003	400	Forrest w/Heavy litter	0.003	0.14					174.2	48.7	222.9
SHEET FLOW 1 SHALLOW CON									LLOW CONCE	NTDATEDE		CUAT	LLOW CONCE			Trovel T	Times (T _t) and T _c Ca	Iculation
				Length	SHEET Surface Desc.	FLOW I Manning	Slope	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	LOW 2 Avg. Velocity	T_t (Sheet)	T_{t} (Shallow Conc.)	T _c
38	LF3 Southwest	5.60	55	(ft)	Surface Dese.	Coefficient, n	(ft/ft)	(ft)	Burrace Dese.	(ft/ft)	(ft/s)	(ft)	Surface Dese.	(ft/ft)	(ft/s)	(min)	(min)	(min)
0.5	(Pre-development)			300	Woods: Dense underbrush		0.003	120	Forrest w/Heavy litter	0.008	0.22					174.2	8.9	183.1
				I											<u> </u>			
	SHEET FLOW 1				SHA	LLOW CONCE	NTRATED F	LOW 1	SHA	LLOW CONCE	NTRATED F	LOW 2	Travel T	Times (T _t) and T _c Ca	lculation			
	LF3 Southeast			Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	T _t (Sheet)	Tt (Shallow Conc.)	T _c
4 S	(Pre-development)	7.68	55	(ft)		Coefficient, n	(ft/ft)	(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	(min)	(min)	(min)
				300	Woods: Dense underbrush	0.800	0.003	120	Forrest w/Heavy litter	0.008	0.22	300	Forrest w/Heavy litter	0.003	0.14	174.2	45.5	219.7
	1	1	1	<u></u>														
			95 61	Leveth	SHEET Surface Desc.	FLOW 1 Manning	<u>C1</u>	-	LLOW CONCE Surface Desc.		LOW 1 Avg. Velocity		LLOW CONCE Surface Desc.		LOW 2 Avg. Velocity	Travel T T _t (Sheet)	Times (T _t) and T _c Ca T _t (Shallow Conc.)	
5 S		1.95		Length (ft)	Surface Desc.	Coefficient, n	Slope (ft/ft)	Length (ft)	Surface Desc.	Slope (ft/ft)	(ft/s)	Length (ft)	Surface Desc.	Slope (ft/ft)	(ft/s)	(min)	(min)	T _c (min)
55	(Post-development)	1.55	01	300	Grass: Short	0.150	0.010									28.2		28.2
						FLOW 1	I	SHALLOW CONCENTRATED FLOW 1			SHALLOW CONCENTRATED FLOW 2					Times (T_t) and T_c Ca		
				Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	T _t (Sheet)	T _t (Shallow Conc.)	T _c
6 S	(Post-development)	1.90	61	(ft) 200	Grass: Short	Coefficient, n 0.150	(ft/ft) 0.010	(ft) 		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	(min) 20.4	(min)	(min)
				200	Glass. Short	0.130	0.010									20.4		20.4
		<u> </u>		1	SHEFT	FLOW 1		SHA	LLOW CONCE	NTRATED F	LOW 1	SHA	LLOW CONCE	NTRATED F	LOW 2	Travel T	Times (T _t) and T _c Ca	Iculation
				Length	Surface Desc.	1	Slope	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity		T_t (Shallow Conc.)	T _c
7 S	 (Deat devi-la month)	1.39	61	(ft)		Coefficient, n	(ft/ft)	(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	(min)	(min)	(min)
	(Post-development)			250	Grass: Short	0.150	0.010									24.4		24.4
	۹	•	•	H	·	·	·			·							· · · · · · · · · · · · · · · · · · ·	
						FLOW 1				FLOW 2			LLOW CONCE				Times (T_t) and T_c Ca	
07		0.52		Length	Surface Desc.	U	Slope	Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Slope	Avg. Velocity	T_t (Sheet)	T _t (Shallow Conc.)	T _c
8S	(Post-development)	0.52	61	(ft) 150	Grass: Short	Coefficient, n 0.150	(ft/ft) 0.007	(ft) 50	Grass: Short	Coefficient, n 0.150	(ft/ft) 0.020	(ft) 		(ft/ft)	(ft/s) 	(min) 24.2	(min) 	(min) 24.2

LANDFILL COVER SYSTEM

LANDFILL NO.3

SURFACE WATER MANAGEMENT SYSTEM CALCULATIONS


AREAS, AND TIMES OF CONCENTRATION (Tc) CALCULATIONS FOR PRE- AND POST-DEVELOPMENT CONDITIONS

2-year, 24-hr Design Rainfall Depth, $P_{2-24} = 3.90$ inches

	SUBAREA DESIGNATION in HydroCAD	AREA (acres)	CURVE NUMBER							1 / 224								
No.	Description															75 17		
				Length	SHEET Surface Desc.	FLOW 1 Manning	Slope	SHA Length	LLOW CONCI Surface Desc.	Slope	LOW 1 Avg. Velocity	SHA Length	LLOW CONCE Surface Desc.	NTRATED I Slope	Avg. Velocity	Travel T. (Sheet)	Times (T _t) and T _c Cal T _c (Shallow Conc.)	T _c
9 S		1.66	61	(ft)	Surface Desc.	Coefficient, n	(ft/ft)	(ft)	Surface Desc.	(ft/ft)	(ft/s)	(ft)	Surface Desc.	(ft/ft)	(ft/s)	(min)	(min)	(min)
75	(Post-development)	1.00	01	300	Grass: Short	0.150	0.008	70	Short Grass Pasture	0.008	0.63					30.8	1.9	32.7
					SHEET				LLOW CONCI		- · ·		LLOW CONCE			Travel Times (T _t) and T _c Calculation		
				Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	T _t (Sheet)	T _t (Shallow Conc.)	T _c
10S	(Post-development)	1.95	61	(ft)		Coefficient, n	(ft/ft)	(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	(min)	(min)	(min)
				300	Grass: Short	0.150	0.009	40	Short Grass Pasture	0.009	0.66					29.7	1.0	30.7
SHEET FLOW 1 SHALLOW CONCENTRATED FLOW 1 SHALLOW CONCENTRATED FLOW 2 Travel Times (T,) and T_ Calculation																		
			Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	T _t (Sheet)	T_t (Shallow Conc.)	T _c	
115		2.90	61	(ft)	Burlace Dese.	Coefficient, n	(ft/ft)	(ft)	Surface Dese.	(ft/ft)	(ft/s)	(ft)	Buildee Dese.	(ft/ft)	(ft/s)	(min)	(min)	(min)
	(Post-development)			300	Grass: Short	0.150	0.009	30	Short Grass Pasture	0.009	0.67					29.3	0.7	30.0
			8												I		-	
				SHEET FLOW 1			SHALLOW CONCENTRATED FLOW 1			SHALLOW CONCENTRATED FLOW 2					Times (T _t) and T _c Cal			
			61	Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	T _t (Sheet)	T _t (Shallow Conc.)	T _c
12S	(Post-development)	3.48		(ft)		Coefficient, n	(ft/ft)	(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	(min)	(min)	(min)
				300	Grass: Short	0.150	0.009	170	Short Grass Pasture	0.009	0.65					30.1	4.4	34.5
	1	1	1	1	SHEET			CILA				CITA	LLOW CONCE			Troval	Times (T _t) and T _c Cal	loulation
				Length	SHEET Surface Desc.	Manning	Slope	Length	LLOW CONCI Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	T _t (Sheet)	T_t (Shallow Conc.)	T _c
138		2.00	61	(ft)	Surface Desc.	Coefficient, n	(ft/ft)	(ft)	Surface Desc.	(ft/ft)	(ft/s)	(ft)	Surface Desc.	(ft/ft)	(ft/s)	(min)	(min)	(min)
100	(Post-development)	2.00	01	250	Grass: Short	0.150	0.018									19.3		19.3
	1	ı	·	<u></u>	CHEFT	ELOW 1		<u> </u>	SHEET	ELOW 2		CILA		NTD ATED I		Troval	Fimes (T) and T. Cal	loulation
				Length	SHEET Surface Desc.	Manning	Slope	Length	SHEET Surface Desc.	FLOW 2 Manning	Slope	Length	LLOW CONCE Surface Desc.	Slope	Avg. Velocity	T _t (Sheet)	Times (T_t) and T_c Cal T_t (Shallow Conc.)	T _c
14S		0.69	61	(ft)	Surface Dest.	Coefficient, n	(ft/ft)	(ft)	Surface Dest.	Coefficient, n	(ft/ft)	(ft)	Surface Dest.	(ft/ft)	(ft/s)	(min)	(min)	(min)
-	(Post-development)	0.09	01	60	Grass: Short	0.150	0.035	120	Grass: Short	0.150	0.008					19.3		19.3
	<u> </u>	1	<u> </u>	<u>n</u>				ı										
				T 1	SHEET		C1 -	T. 4		FLOW 2	Cl		LLOW CONCE		-		Times (T_t) and T_c Cal	
15S		1.08	61	Length (ft)	Surface Desc.	Manning Coefficient, n	Slope (ft/ft)	Length (ft)	Surface Desc.	Manning Coefficient, n	Slope (ft/ft)	Length (ft)	Surface Desc.	Slope (ft/ft)	Avg. Velocity (ft/s)	T _t (Sheet) (min)	T _t (Shallow Conc.) (min)	T _c (min)
	(Post-development)			175	Grass: Short	0.150	0.006	50	Grass: Short	0.150	0.020				(108)	(1111)		28.0
				175	Grass. Short	0.150	0.000	50	Grass. Short	0.150	0.020					20.0		20.0

ATTACHMENT 10

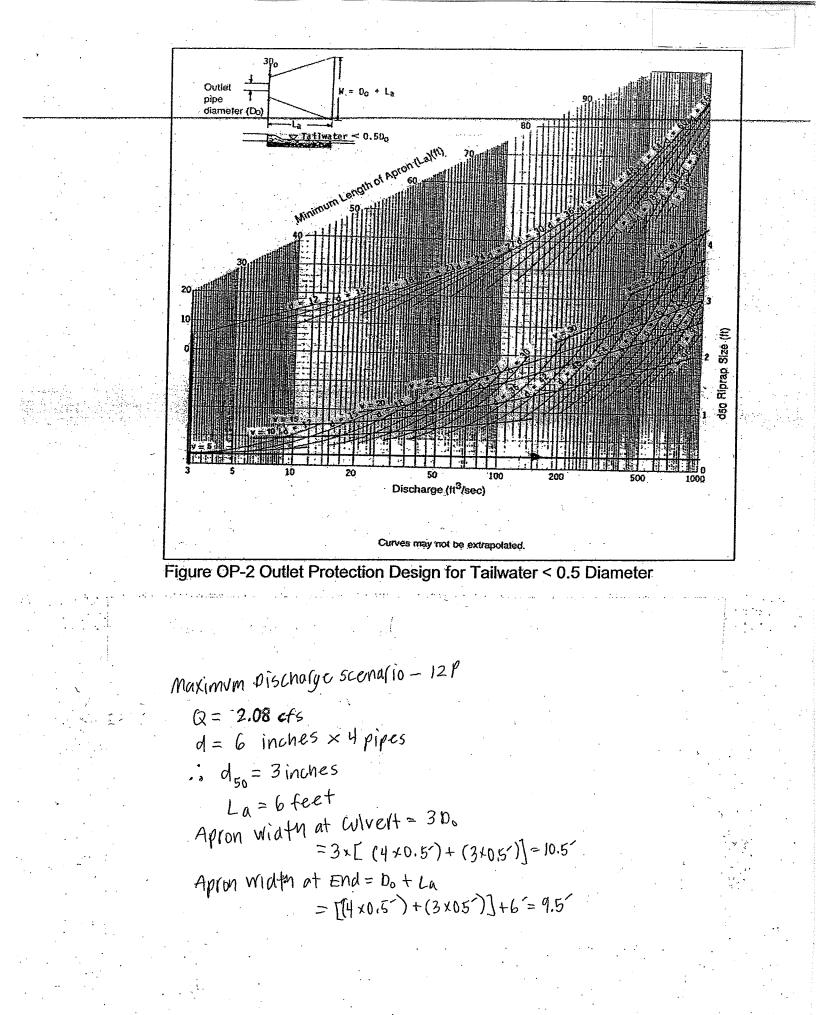
Stormwater Diversion Berm Outlet Structures

RIPRAP SIZE CALCULATION FOR THE DOWNCHUTE

$$D_{50} = [QS_0^{0.58} / (3.93*10^{-2})]^{(1/1.89)}$$

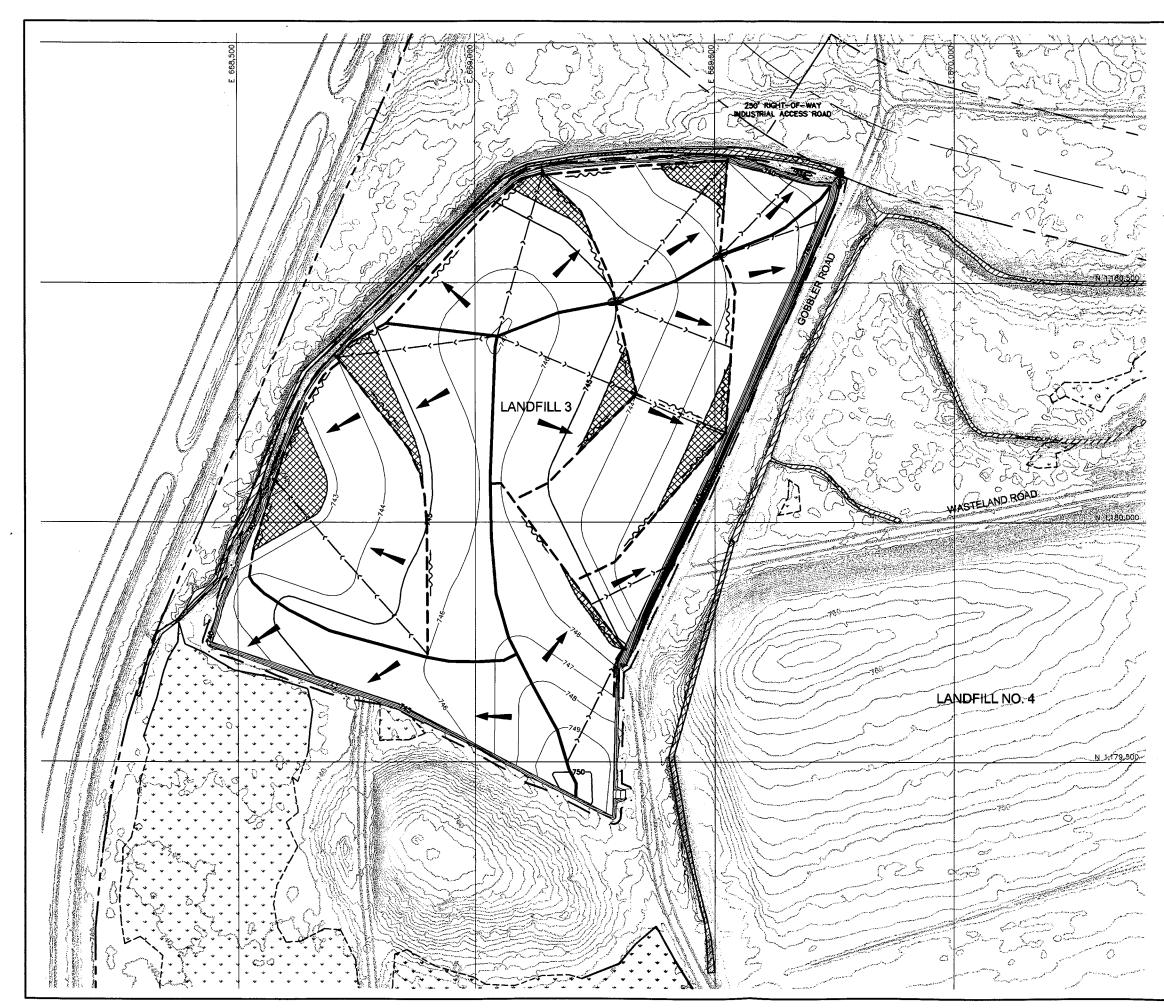
$$D_{50} = [0.72 \text{ cfs } * 0.01^{0.58} / 3.93*10^{-2})]^{(1/1.89)}$$

$$D_{50} = 1.1 \text{ inch}$$


GEOSYNTEC CONSULTANTS									
	KENNESAW, G	A							
DATE: OCTOBER 2006	SCALE:	N.T.S.							
PROJECT NO. GR3762	FILE NO.	3762SM11							
DOCUMENT NO.	FIGURE NO.	10							

ATTACHMENT 10 -**DIVERSION BERM** OUTLET STRUCTURES

-GEOTEXTILE (TYP)


_

-RIPRAP SLOPE PROTECTION (TYP)

ATTACHMENT 11

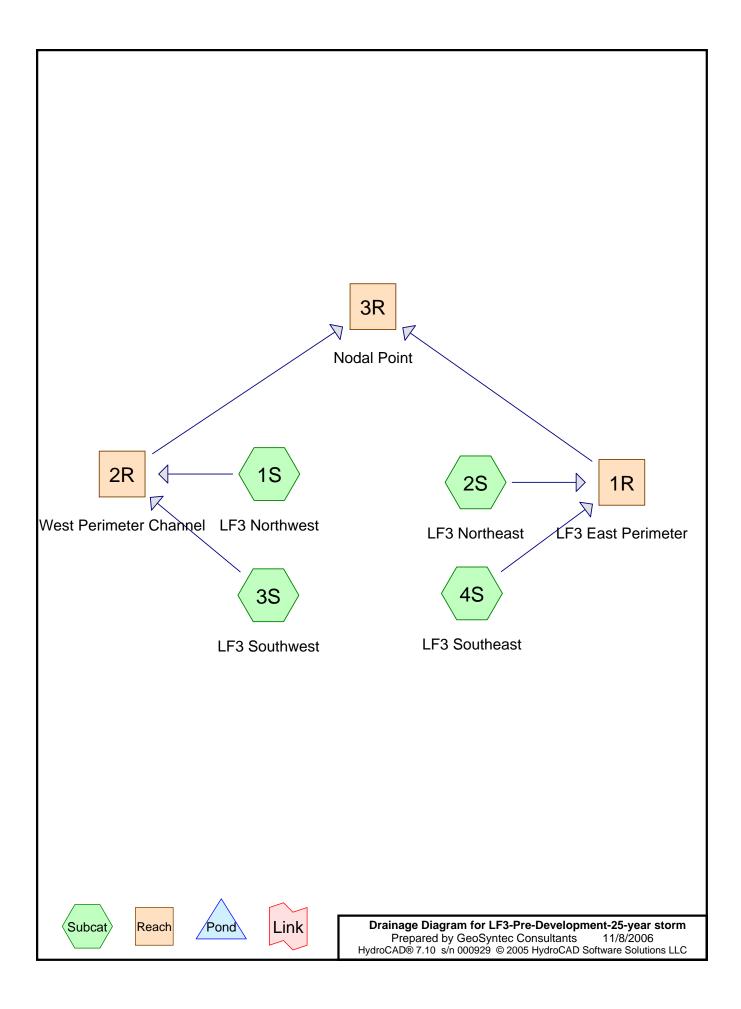
Ponded Water Elevations During 25-Year, 24-Hour Storm

LEGEND									
are a mark of the second	EXISTING GROUND ELEVATION (FEET) (NOTE 1)								
alificans e alonnes alonne el lon	EXISTING ROAD								
	LANGFILL/FILL AREA PERIMETER LIMIT								
750	FINISHED GRADE ELEVATION (FEET)								
	RIGHT-OF-WAY LIMIT								
	INDUSTRIAL ACCESS ROAD CENTERLINE								
	CENTERLINE OF DOWNCHUTE								
	CENTERLINE OF DIVERSION BERM								
	JURISDICTIONAL WETLAND (SURVEYED BOUNDARY) (NOTE 2)								
	JURISDICTIONAL WATERS OF THE UNITED STATES (NOTE 2)								
	SURFACE WATER FLOW DIRECTION								
	DIVERSION BERM FLOW DIRECTION								
	SUBCATCHMENT BOUNDARY								
	FLOW DIRECTION								
	PONDED WATER LIMIT								

NOTES:

- 1. TOPOGRAPHY DEVELOPED USING LIDAR TECHNOLOGY PERFORMED BY OPTIMAL GEOMATICS OF HUNTSVILLE, ALABAMA ON 17 DECEMBER 2005.
- 2. LOCATIONS OF JURISDICTIONAL WETLANDS AND WATERS WERE OBTAINED FROM "FINAL WETLAND DETERMINATION, LANDFILLS AND FILL AREAS," BY SHAW ENVIRONMENTAL, INC. DATED 17 NOVENBER 2003.

200' 400' SCALE IN FEET

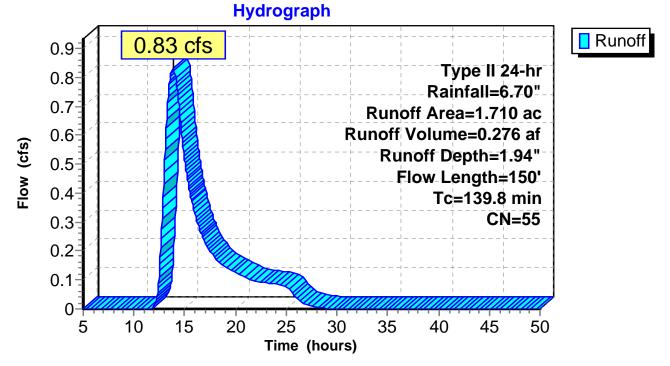

ATTACHMENT 11 -PONDED WATER ELEVATIONS DURING 25-YEAR 24-HOUR STORM

		SULTANTS
DATE: OCTOBER 2006	KENNESAW, GA	1"=200'
PROJECT NO. GR3762	FILE NO.	3762SM12
DOCUMENT NO.	FIGURE NO.	11

ATTACHMENT 12

Computations Using HydroCADTM: Pre-Development

25 Year – 24 Hour Storm SCS Distribution (Pre-Development)

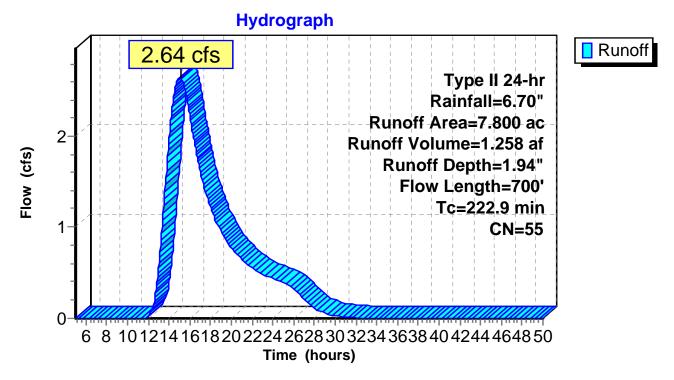

Time span=5.00-50.00 hrs, dt=0.05 hrs, 901 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: LF3 Northwest	Runoff Area=1.710 ac Runoff Depth=1.94" Flow Length=150' Tc=139.8 min CN=55 Runoff=0.83 cfs 0.276 af
Subcatchment 2S: LF3 Northeast	Runoff Area=7.800 ac Runoff Depth=1.94" Flow Length=700' Tc=222.9 min CN=55 Runoff=2.64 cfs 1.258 af
Subcatchment 3S: LF3 Southwest	Runoff Area=5.600 ac Runoff Depth=1.94"
	Flow Length=420' Tc=183.1 min CN=55 Runoff=2.23 cfs 0.903 af
Subcatchment 4S: LF3 Southeast	Runoff Area=7.680 ac Runoff Depth=1.94"
	Flow Length=720' Tc=219.6 min CN=55 Runoff=2.66 cfs 1.239 af
Reach 1R: LF3 East Perimeter	Inflow=5.28 cfs 2.497 af
	Outflow=5.28 cfs 2.497 af
Reach 2R: West Perimeter Channel	Peak Depth=0.30' Max Vel=1.2 fps Inflow=2.95 cfs 1.179 af
n=0.030 L=2	080.0' S=0.0034 '/' Capacity=172.53 cfs Outflow=2.83 cfs 1.179 af
Reach 3R: Nodal Point	Inflow=8.11 cfs 3.676 af
	Outflow=8.11 cfs 3.676 af

Total Runoff Area = 22.790 ac Runoff Volume = 3.676 af Average Runoff Depth = 1.94"

Runoff = 0.83 cfs @ 13.83 hrs, Volume= 0.276 af, Depth= 1.94"

Area	(ac) C	N Dese	cription					
1	.710 5	55						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
139.8	150	0.0013	0.0		Sheet Flow, FANWR Woods: Dense underbrush n= 0.800 P2= 3.90"			
Subcatchment 1S: LF3 Northwest								

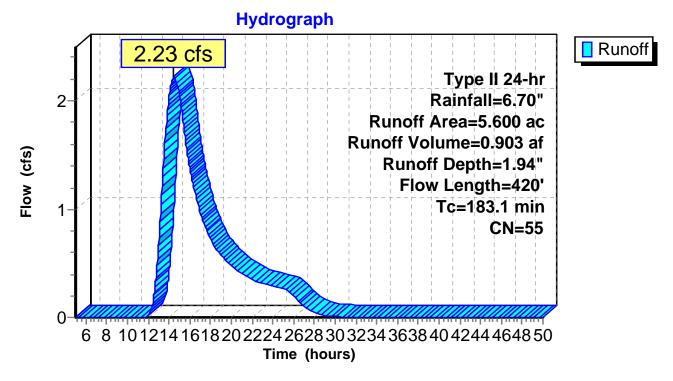

Subcatchment 2S: LF3 Northeast

Runoff = 2.64 cfs @ 15.09 hrs, Volume= 1.258 af, Depth= 1.94"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.70"

Area	(ac) C	N Dese	cription		
7	.800 5	55			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
174.2	300	0.0030	0.0		Sheet Flow,
48.7	400	0.0030	0.1		Woods: Dense underbrush n= 0.800 P2= 3.90" Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps
222.9	700	Total			

Subcatchment 2S: LF3 Northeast

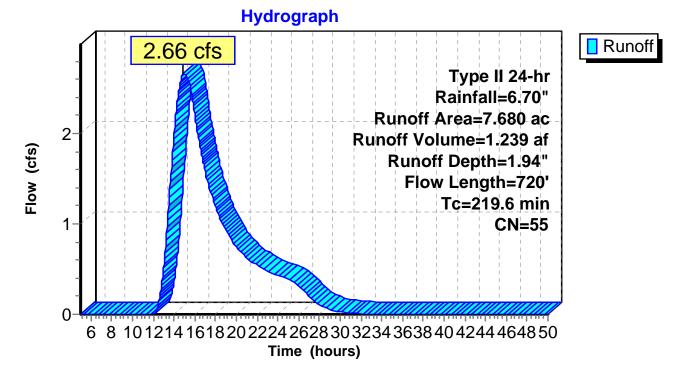

Subcatchment 3S: LF3 Southwest

Runoff = 2.23 cfs @ 14.46 hrs, Volume= 0.903 af, Depth= 1.94"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.70"

Area	(ac) C	N Dese	cription		
5.	.600 5	55			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
174.2	300	0.0030	0.0		Sheet Flow,
8.9	120	0.0080	0.2		Woods: Dense underbrush n= 0.800 P2= 3.90" Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps
183.1	420	Total			

Subcatchment 3S: LF3 Southwest

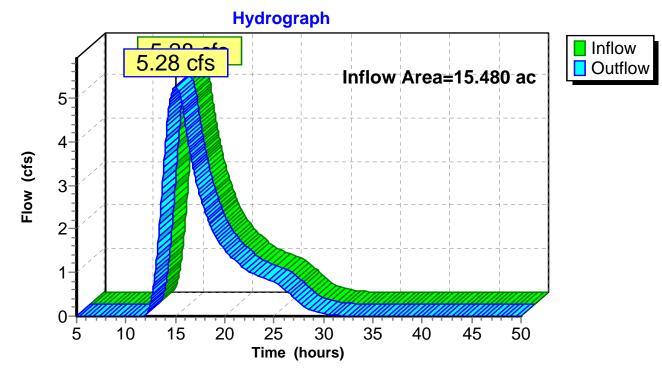

Subcatchment 4S: LF3 Southeast

Runoff = 2.66 cfs @ 14.91 hrs, Volume= 1.239 af, Depth= 1.94"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.70"

Area	(ac) C	N Dese	cription		
7	.680 5	55			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
174.2	300	0.0030	0.0	(010)	Sheet Flow,
8.9	120	0.0080	0.2		Woods: Dense underbrush n= 0.800 P2= 3.90" Shallow Concentrated Flow,
0.0	120	0.0000	0.2		Forest w/Heavy Litter Kv= 2.5 fps
36.5	300	0.0030	0.1		Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps
219.6	720	Total			

Subcatchment 4S: LF3 Southeast



Reach 1R: LF3 East Perimeter

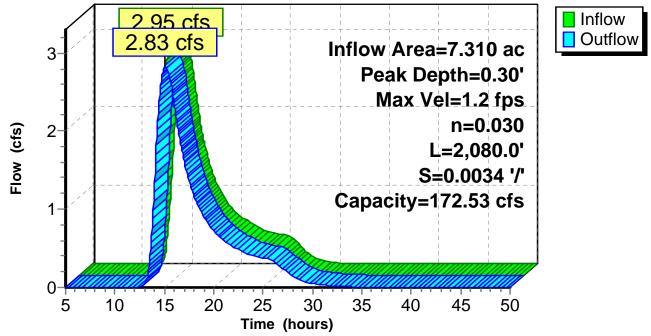
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	15.480 ac, I	nflow Depth = 1.94"	
Inflow	=	5.28 cfs @	15.07 hrs, Volume=	2.497 af
Outflow	=	5.28 cfs @	15.07 hrs, Volume=	2.497 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs

Reach 1R: LF3 East Perimeter

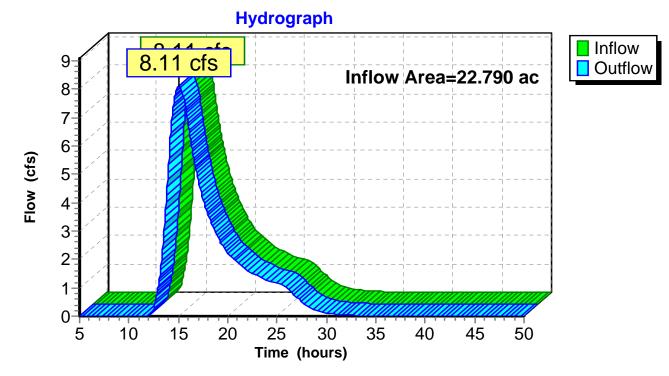
Reach 2R: West Perimeter Channel


Inflow Area	a =	7.310 ac, Ir	nflow Depth = 1.94"		
Inflow	=	2.95 cfs @	14.27 hrs, Volume=	1.179 af	
Outflow	=	2.83 cfs @	15.11 hrs, Volume=	1.179 af,	Atten= 4%, Lag= 49.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs Max. Velocity= 1.2 fps, Min. Travel Time= 28.4 min Avg. Velocity = 0.5 fps, Avg. Travel Time= 71.2 min

Peak Depth= 0.30' @ 14.63 hrs Capacity at bank full= 172.53 cfs Inlet Invert= 738.00', Outlet Invert= 731.00' 7.00' x 3.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 '/' Top Width= 19.00' Length= 2,080.0' Slope= 0.0034 '/'

Reach 2R: West Perimeter Channel



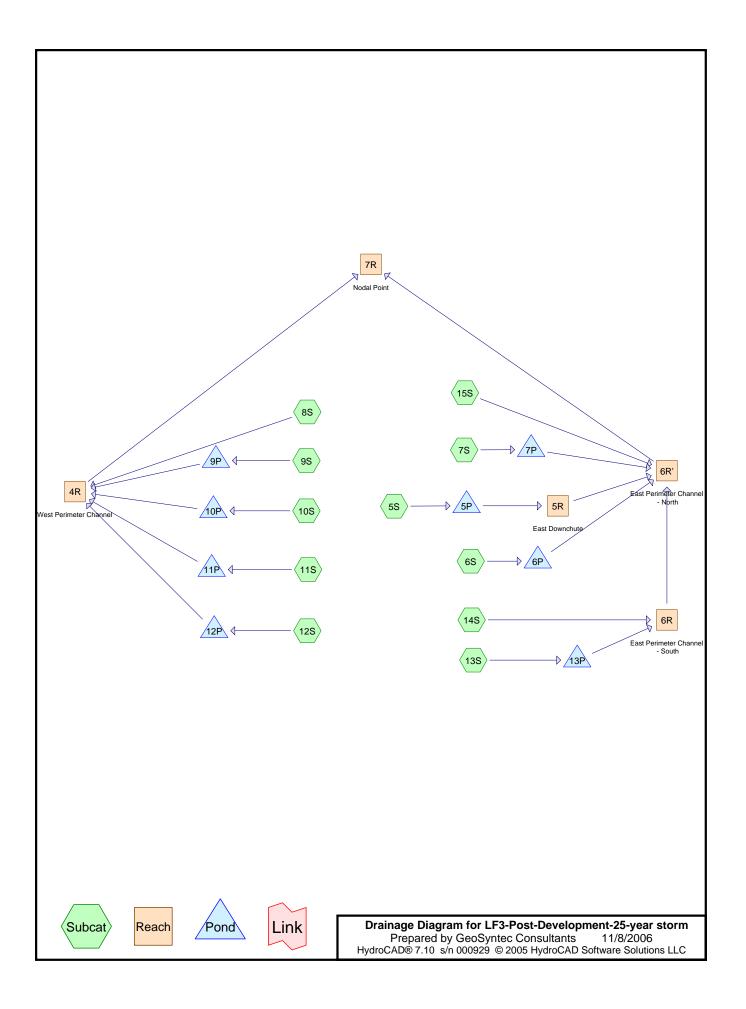
Reach 3R: Nodal Point

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	22.790 ac, Inflow	Depth = 1.94"	
Inflow	=	8.11 cfs @ 15.0	8 hrs, Volume=	3.676 af
Outflow	=	8.11 cfs @ 15.0	8 hrs, Volume=	3.676 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs

Reach 3R: Nodal Point


ATTACHMENT 13

Computations Using HydroCADTM: Post-Development

25 Year – 24 Hour Storm

SCS Distribution

(Post-Development)

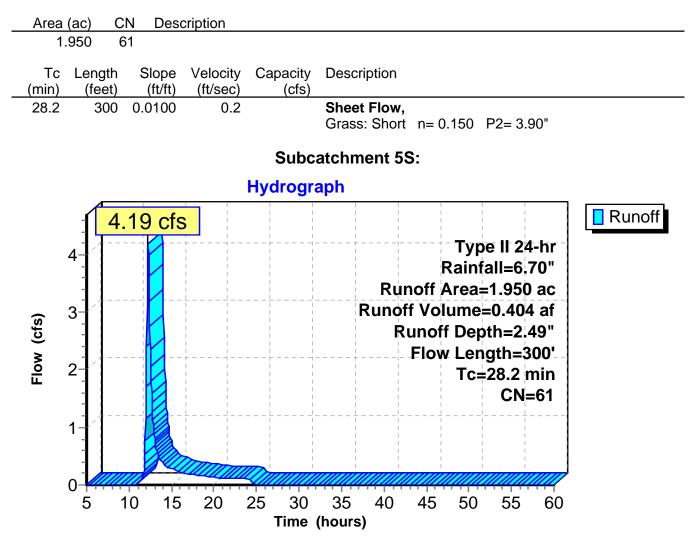
LF3-Post-Development-25-year storm							
Prepared by GeoSyntec Consultants							
HydroCAD® 7.10 s/n 000929 © 2005 HydroCAD Software Solutions LLC							

Time span=5.00-60.00 hrs, dt=0.05 hrs, 1101 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 5S:	Flow Length=300'	Runoff Area=1.950 ac Runoff Depth=2.49" Tc=28.2 min CN=61 Runoff=4.19 cfs 0.404 af
Subcatchment 6S:	Flow Length=200'	Runoff Area=1.900 ac Runoff Depth=2.49" Tc=20.4 min CN=61 Runoff=5.01 cfs 0.394 af
Subcatchment 7S:	Flow Length=250'	Runoff Area=1.390 ac Runoff Depth=2.49" Tc=24.4 min CN=61 Runoff=3.28 cfs 0.288 af
Subcatchment 8S:	Flow Length=200'	Runoff Area=0.520 ac Runoff Depth=2.49" Tc=24.1 min CN=61 Runoff=1.24 cfs 0.108 af
Subcatchment 9S:	Flow Length=370'	Runoff Area=1.660 ac Runoff Depth=2.49" Tc=32.7 min CN=61 Runoff=3.23 cfs 0.344 af
Subcatchment 10S:	Flow Length=340'	Runoff Area=1.950 ac Runoff Depth=2.49" Tc=30.7 min CN=61 Runoff=3.96 cfs 0.404 af
Subcatchment 11S:	Flow Length=330'	Runoff Area=2.900 ac Runoff Depth=2.49" Tc=30.0 min CN=61 Runoff=5.98 cfs 0.601 af
Subcatchment 12S:	Flow Length=470'	Runoff Area=3.480 ac Runoff Depth=2.49" Tc=34.5 min CN=61 Runoff=6.52 cfs 0.721 af
Subcatchment 13S:	Flow Length=250'	Runoff Area=2.000 ac Runoff Depth=2.49" Tc=19.3 min CN=61 Runoff=5.44 cfs 0.415 af
Subcatchment 14S:	Flow Length=180'	Runoff Area=0.690 ac Runoff Depth=2.49" Tc=19.3 min CN=61 Runoff=1.88 cfs 0.143 af
Subcatchment 15S:	Flow Length=225'	Runoff Area=1.080 ac Runoff Depth=2.49" Tc=28.0 min CN=61 Runoff=2.33 cfs 0.224 af
Reach 4R: West Perimeter Channel n=0.030 L=2,	•	=0.39' Max Vel=1.4 fps Inflow=4.59 cfs 2.147 af Capacity=172.53 cfs Outflow=4.37 cfs 2.145 af
Reach 5R: East Downchute n=0.040 L	•	=0.43' Max Vel=1.3 fps Inflow=0.72 cfs 0.395 af /' Capacity=19.99 cfs Outflow=0.72 cfs 0.395 af
Reach 6R: East Perimeter Channel - So n=0.030 L		=0.67' Max Vel=1.6 fps Inflow=1.97 cfs 0.532 af /' Capacity=33.66 cfs Outflow=1.79 cfs 0.532 af
Reach 6R': East Perimeter Channel - No n=0.030 L		=0.98' Max Vel=2.1 fps Inflow=5.16 cfs 1.819 af /' Capacity=33.28 cfs Outflow=4.96 cfs 1.819 af

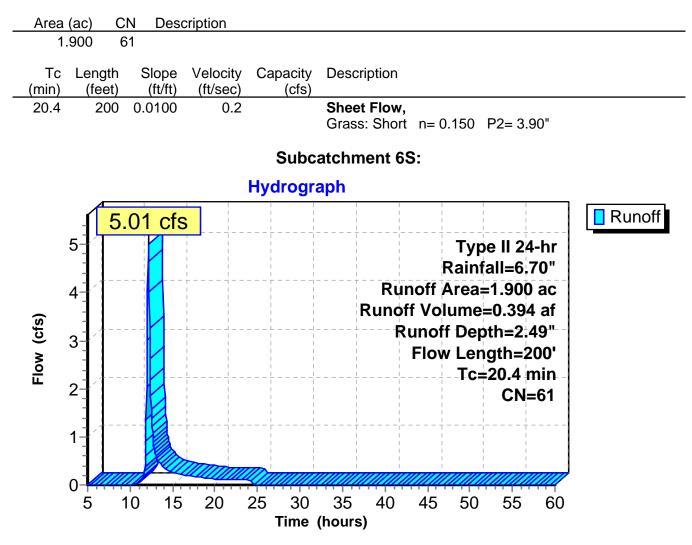
I F3-P	ost-Develo	nment-25-v	ear storm
LI J-I			

Type II 24-hr Rainfall=6.70" Page 3 11/8/2006

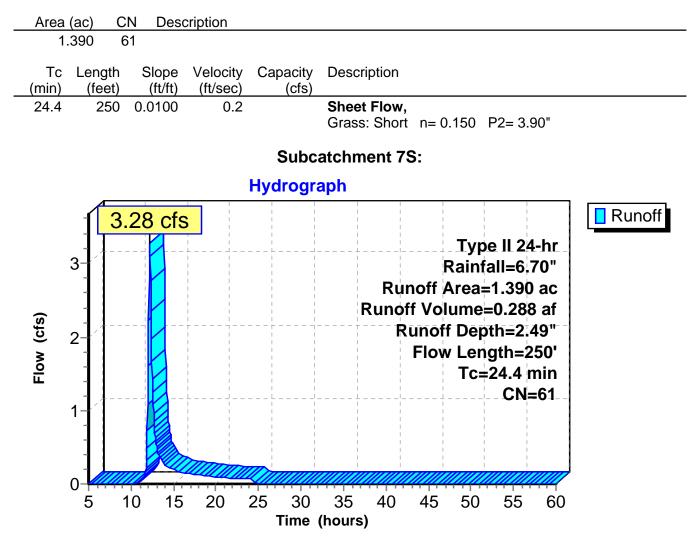

Prepared by GeoSyntec Consultants	
HydroCAD® 7.10 s/n 000929 © 2005 HydroCAD Software Solutions LLC	

Reach 7R: Nodal Point	Inflow=7.22 cfs 3.963 af Outflow=7.22 cfs 3.963 af
Pond 5P:	Peak Elev=744.58' Storage=0.177 af Inflow=4.19 cfs 0.404 af 6.0" x 11.5' Culvert Outflow=0.72 cfs 0.395 af
Pond 6P:	Peak Elev=742.64' Storage=0.168 af Inflow=5.01 cfs 0.394 af 6.0" x 11.5' Culvert Outflow=0.77 cfs 0.387 af
Pond 7P:	Peak Elev=742.51' Storage=0.121 af Inflow=3.28 cfs 0.288 af 6.0" x 11.5' Culvert Outflow=0.62 cfs 0.282 af
Pond 9P:	Peak Elev=742.55' Storage=0.145 af Inflow=3.23 cfs 0.344 af 6.0" x 11.5' Culvert Outflow=0.69 cfs 0.337 af
Pond 10P:	Peak Elev=744.58' Storage=0.175 af Inflow=3.96 cfs 0.404 af 6.0" x 11.5' Culvert Outflow=0.74 cfs 0.395 af
Pond 11P:	Peak Elev=744.80' Storage=0.271 af Inflow=5.98 cfs 0.601 af 6.0" x 11.5' Culvert Outflow=0.91 cfs 0.590 af
Pond 12P:	Peak Elev=742.73' Storage=0.250 af Inflow=6.52 cfs 0.721 af 6.0" x 11.5' Culvert Outflow=2.08 cfs 0.717 af
Pond 13P:	Peak Elev=745.40' Storage=0.213 af Inflow=5.44 cfs 0.415 af 6.0" x 11.5' Culvert Outflow=0.43 cfs 0.389 af

Total Runoff Area = 19.520 ac Runoff Volume = 4.047 af Average Runoff Depth = 2.49"


Subcatchment 5S:

Runoff = 4.19 cfs @ 12.24 hrs, Volume= 0.404 af, Depth= 2.49"

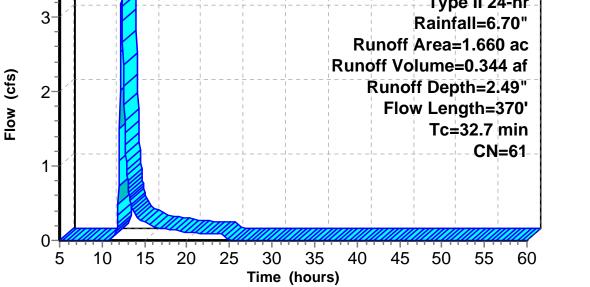

Subcatchment 6S:

Runoff = 5.01 cfs @ 12.14 hrs, Volume= 0.394 af, Depth= 2.49"

Subcatchment 7S:

Runoff = 3.28 cfs @ 12.19 hrs, Volume= 0.288 af, Depth= 2.49"

Subcatchment 8S:

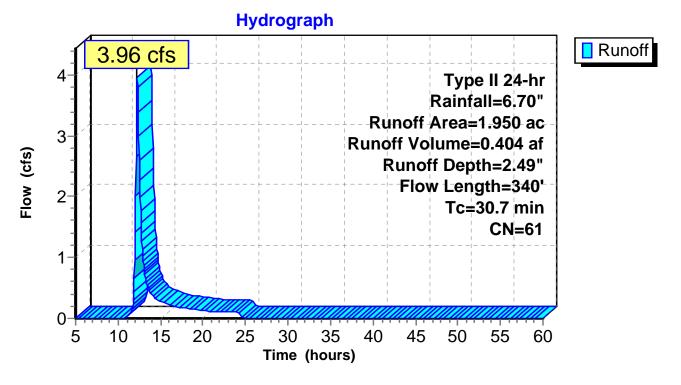

Runoff = 1.24 cfs @ 12.19 hrs, Volume= 0.108 af, Depth= 2.49"

Area			cription		
0	.520 6	61			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.0	150	0.0067	0.1		Sheet Flow, Grass: Short n= 0.150 P2= 3.90"
5.1	50	0.0200	0.2		Grass: Short n= 0.150 P2= 3.90 Sheet Flow, Grass: Short n= 0.150 P2= 3.90"
24.1	200	Total			
				Subc	atchment 8S:
				Hydrogra	aph
Flow (cfs)		24 cfs		25 30 Time	Type II 24-hr Rainfall=6.70" Runoff Area=0.520 ac Runoff Volume=0.108 af Runoff Depth=2.49" Flow Length=200' Tc=24.1 min CN=61

Subcatchment 9S:

Runoff = 3.23 cfs @ 12.29 hrs, Volume= 0.344 af, Depth= 2.49"

Area	Area (ac) CN Description								
1.	.660 6	61							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
30.8	300	0.0080	0.2		Sheet Flow,				
1.9	70	0.0080	0.6		Grass: Short n= 0.150 P2= 3.90" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps				
32.7	370	Total							
	Subcatchment 9S:								
	Hydrograph								
3- 3- 3- 3- 3- 3- 3- 3- 3- 3-									

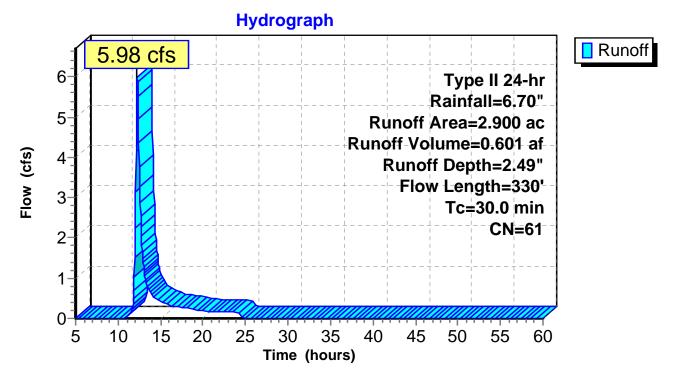

Subcatchment 10S:

Runoff = 3.96 cfs @ 12.27 hrs, Volume= 0.404 af, Depth= 2.49"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.70"

_	Area	(ac) C	N Dese	cription		
	1.	950 6	61			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	29.7	300	0.0088	0.2		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
	1.0	40	0.0088	0.7		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	30.7	340	Total			

Subcatchment 10S:

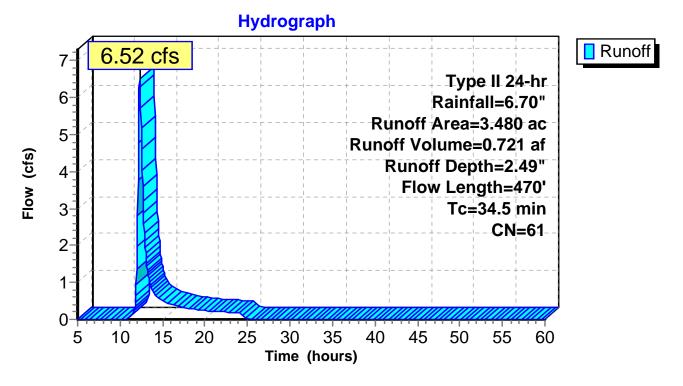

Subcatchment 11S:

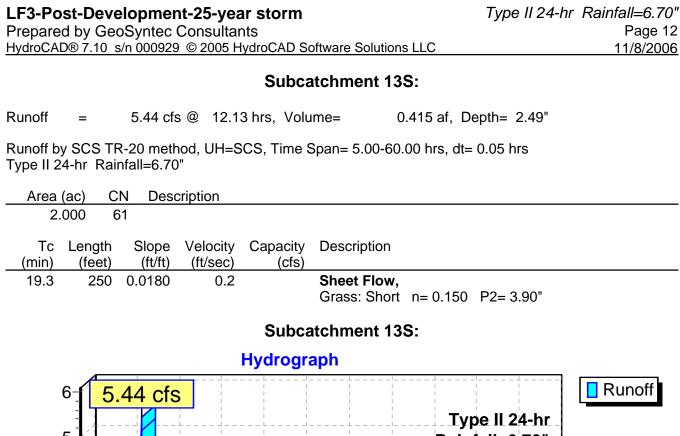
Runoff = 5.98 cfs @ 12.26 hrs, Volume= 0.601 af, Depth= 2.49"

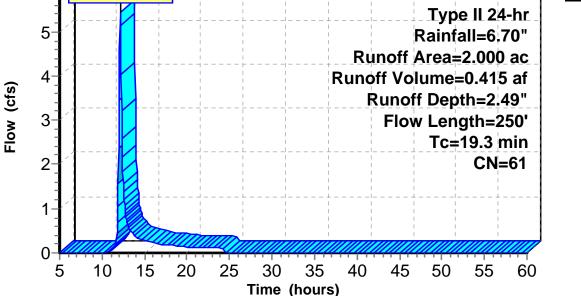
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.70"

Area	(ac) C	N Des	cription		
2.	.900 6	61			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
29.3	300	0.0091	0.2		Sheet Flow,
0.7	30	0.0091	0.7		Grass: Short n= 0.150 P2= 3.90" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
30.0	330	Total			

Subcatchment 11S:




Subcatchment 12S:


Runoff = 6.52 cfs @ 12.32 hrs, Volume= 0.721 af, Depth= 2.49"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.70"

Area	(ac) C	N Des	cription				
3.	3.480 61						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
30.1	300	0.0085	0.2		Sheet Flow,		
4.4	170	0.0085	0.6		Grass: Short n= 0.150 P2= 3.90" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		
34.5	470	Total					
	Subcatchment 12S:						

10

5

15

20

25

30

Time (hours)

35

40

45

50

55

60

Subcatchment 14S:

Runoff = 1.88 cfs @ 12.13 hrs, Volume= 0.143 af, Depth= 2.49"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.70"

Area			cription				
0	.690 6	61					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
4.7	60	0.0350	0.2		Sheet Flow,		
14.6	120	0.0083	0.1		Grass: Short n= 0.150 P2= 3.90" Sheet Flow, Grass: Short n= 0.150 P2= 3.90"		
19.3	180	Total					
Subcatchment 14S:							
Hydrograph							
	2-1	.88 cfs			Runoff		
	-				Type II 24-hr Rainfall=6.70"		
	-				Runoff Area=0.690 ac		
()	-				Runoff Volume=0.143 af		
Flow (cfs)	-		; ; ; ; +	· · · · · · · · · · · · · · · · · · ·	Runoff Depth=2.49"		
Ň	1-		 		Flow Length=180'		
Ĕ	-		I I I I I I		Tc=19.3 min		
	-				CN=61		
	-						

0

5

10

15

20

25

Subcatchment 15S:

Runoff 2.33 cfs @ 12.24 hrs, Volume= 0.224 af, Depth= 2.49" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.70"

Area	Area (ac) CN Description					
1	.080 6	61				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
22.9	175	0.0057	0.1		Sheet Flow,	
5.1	50	0.0200	0.2		Grass: Short n= 0.150 P2= 3.90" Sheet Flow, Grass: Short n= 0.150 P2= 3.90"	
28.0	225	Total				
Flow (cfs)	2-	.33 cfs		Hydrogra	atchment 15S: aph Type II 24-hr Rainfall=6.70" Runoff Area=1.080 ac Runoff Volume=0.224 af Runoff Depth=2.49" Flow Length=225'	
Flov	1				Tc=28.0 min	

35

30

Time (hours)

50

45

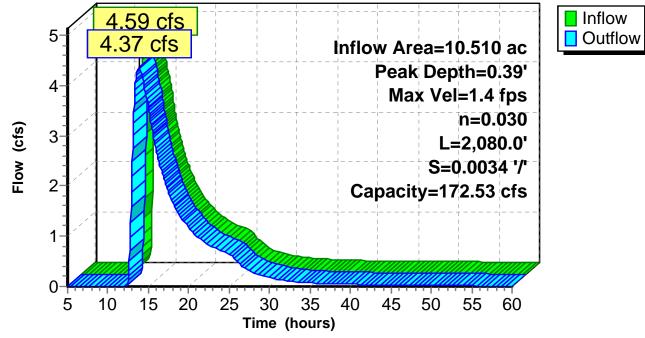
40

55

60

CN=61

Reach 4R: West Perimeter Channel

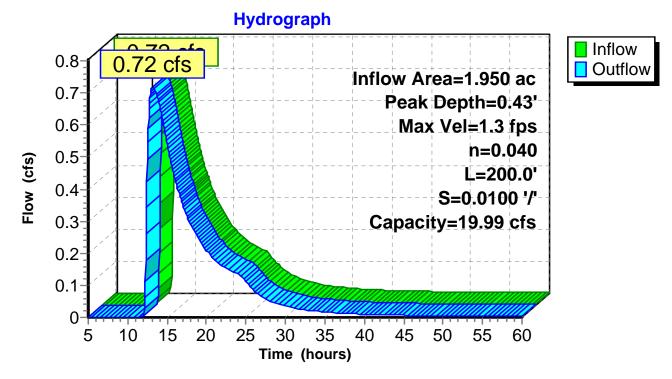

Inflow Area =	=	10.510 ac, Inflow Depth > 2.45"	
Inflow =	:	4.59 cfs @ 12.93 hrs, Volume=	2.147 af
Outflow =		4.37 cfs @ 13.80 hrs, Volume=	2.145 af, Atten= 5%, Lag= 51.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Max. Velocity= 1.4 fps, Min. Travel Time= 24.3 min Avg. Velocity = 0.5 fps, Avg. Travel Time= 70.1 min

Peak Depth= 0.39' @ 13.39 hrs Capacity at bank full= 172.53 cfs Inlet Invert= 738.00', Outlet Invert= 731.00' 7.00' x 3.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 '/' Top Width= 19.00' Length= 2,080.0' Slope= 0.0034 '/'

Reach 4R: West Perimeter Channel

Reach 5R: East Downchute

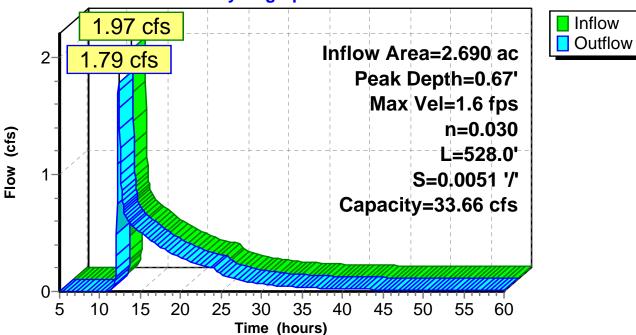

[79] Warning: Submerged Pond 5P Primary device # 1 INLET by 0.33'

Inflow Are	a =	1.950 ac, Inflow Depth > 2.43"	
Inflow	=	0.72 cfs @ 13.09 hrs, Volume=	0.395 af
Outflow	=	0.72 cfs @ 13.17 hrs, Volume=	0.395 af, Atten= 0%, Lag= 4.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Max. Velocity= 1.3 fps, Min. Travel Time= 2.6 min Avg. Velocity = 0.6 fps, Avg. Travel Time= 5.6 min

Peak Depth= 0.43' @ 13.12 hrs Capacity at bank full= 19.99 cfs Inlet Invert= 743.90', Outlet Invert= 741.90' 0.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 3.0 '/' Top Width= 9.00' Length= 200.0' Slope= 0.0100 '/'

Reach 5R: East Downchute


Reach 6R: East Perimeter Channel - South

Inflow Area	a =	2.690 ac, 1	nflow Depth > 2.37"		
Inflow	=	1.97 cfs @	12.14 hrs, Volume=	0.532 af	
Outflow	=	1.79 cfs @	12.30 hrs, Volume=	0.532 af, At	ten= 9%, Lag= 9.8 min

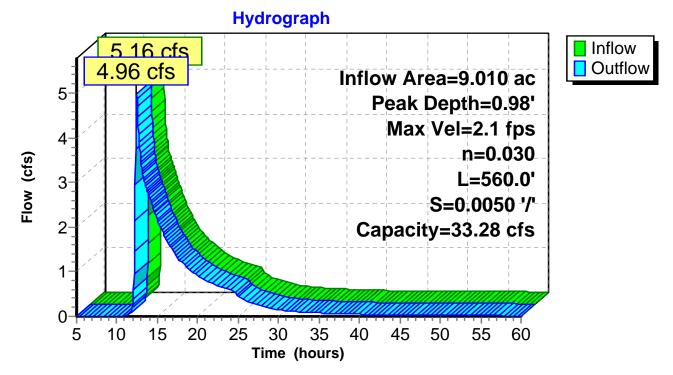
Routing by Stor-Ind+Trans method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Max. Velocity= 1.6 fps, Min. Travel Time= 5.4 min Avg. Velocity = 0.7 fps, Avg. Travel Time= 12.8 min

Peak Depth= 0.67' @ 12.21 hrs Capacity at bank full= 33.66 cfs Inlet Invert= 741.00', Outlet Invert= 738.30' $0.00' \times 2.00'$ deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0 2.0 '/' Top Width= 10.00' Length= 528.0' Slope= 0.0051 '/'

Reach 6R: East Perimeter Channel - South

Hydrograph

Reach 6R': East Perimeter Channel - North


[61] Hint: Submerged 36% of Reach 6R bottom

Inflow Are	a =	9.010 ac, Inflow Depth > 2.42"	
Inflow	=	5.16 cfs @ 12.31 hrs, Volume=	1.819 af
Outflow	=	4.96 cfs @ 12.46 hrs, Volume=	1.819 af, Atten= 4%, Lag= 8.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Max. Velocity= 2.1 fps, Min. Travel Time= 4.5 min Avg. Velocity = 0.9 fps, Avg. Travel Time= 10.7 min

Peak Depth= 0.98' @ 12.38 hrs Capacity at bank full= 33.28 cfs Inlet Invert= 738.30', Outlet Invert= 735.50' $0.00' \times 2.00'$ deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0 2.0 '/' Top Width= 10.00' Length= 560.0' Slope= 0.0050 '/'

Reach 6R': East Perimeter Channel - North

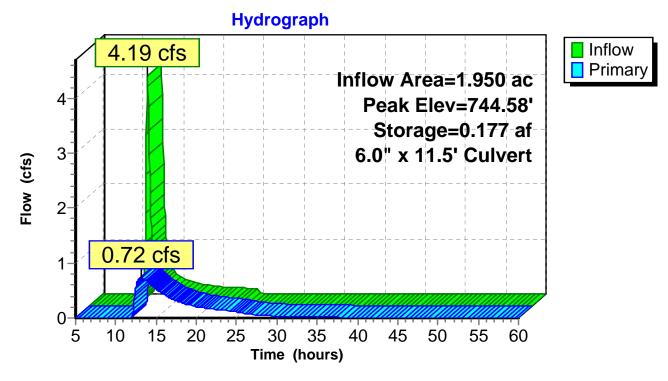


Reach 7R: Nodal Point

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	19.520 ac, Inflow Depth :	> 2.44"	
Inflow	=	7.22 cfs @ 13.65 hrs, \	Volume=	3.963 af
Outflow	=	7.22 cfs @ 13.65 hrs, V	Volume=	3.963 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs

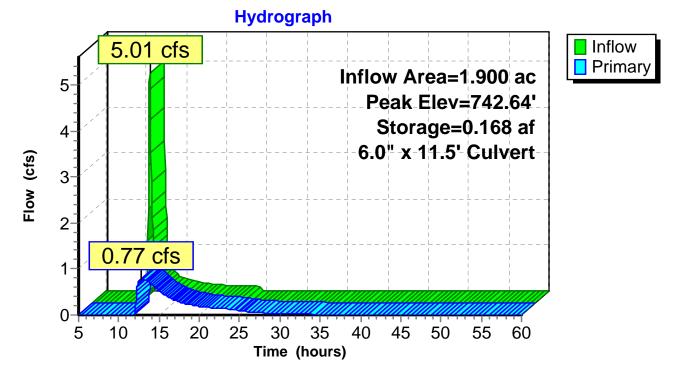

Reach 7R: Nodal Point

Pond 5P:

Inflow A	rea =	1.950 ac,	Inflow Depth = 2.49"		
Inflow	=	,	12.24 hrs, Volume=	0.404 af	
Outflow	=		13.09 hrs, Volume=	0.395 af, Atten= 83%, Lag= 51.2 min	
Primary			13.09 hrs, Volume=	0.395 af	
· · · · · · · · · · · · · · · · · · ·					
Routina	by Stor-In	d method. Ti	me Span= 5.00-60.00 hrs, o	dt= 0.05 hrs	
			s Surf.Area= 0.000 ac S		
			8 min calculated for 0.394		
•			0 min (1,113.8 - 870.9)		
Volume	Inve	ert Avail.S	torage Storage Description	on	
#1	744.0		460 af Custom Stage Da		
	-				
Elevatio	on Cu	.store			
(fee	et) (a	cre-feet)			
744.0		0.000			
745.5		0.460			
1 1010		01100			
Device	Routing	Invert	Outlet Devices		
#1	Primary	744.00'	6.0" x 11.5' long Culver	t X 2.00	
	,		CMP, mitered to conform		
			Outlet Invert= 743.88' S		
			n= 0.025 Corrugated met	al	
			5		
Primary OutFlow Max-0.72 of @ 13.00 br HW-744.58' (Free Discharge)					

Primary OutFlow Max=0.72 cfs @ 13.09 hrs HW=744.58' (Free Discharge) —1=Culvert (Barrel Controls 0.72 cfs @ 2.0 fps)

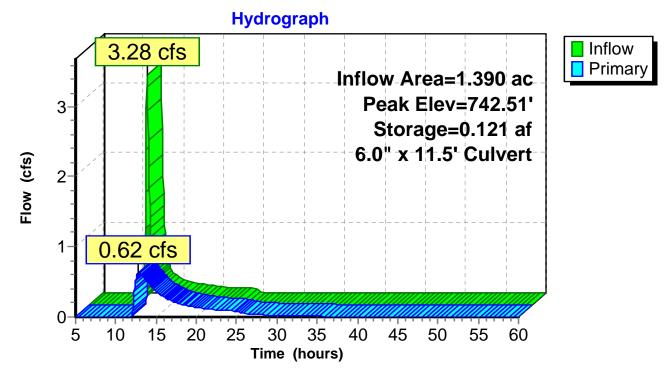
Pond 5P:



Pond 6P:

Inflow Area = Inflow = Outflow = Primary =	5.01 cfs @ 0.77 cfs @	nflow Depth = 2.49" 12.14 hrs, Volume= 0.394 af 12.83 hrs, Volume= 0.387 af, Atten= 85%, Lag= 41.0 min 12.83 hrs, Volume= 0.387 af			
Routing by Stor-Ind method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 742.64' @ 12.83 hrs Surf.Area= 0.000 ac Storage= 0.168 af Plug-Flow detention time= 221.9 min calculated for 0.387 af (98% of inflow) Center-of-Mass det. time= 211.4 min (1,075.0 - 863.6)					
Volume Inve		torage Storage Description			
#1 742.0	0' 0.	395 af Custom Stage DataListed below			
(feet) (a 742.00 743.50	m.Store <u>cre-feet)</u> 0.000 0.395				
Device Routing	Invert	Outlet Devices			
#1 Primary	742.00'	6.0" x 11.5' long Culvert X 2.00 CMP, mitered to conform to fill, Ke= 0.700 Outlet Invert= 741.88' S= 0.0104 '/' Cc= 0.900 n= 0.025 Corrugated metal			
Primary OutFlow Max=0.77 cfs @ 12.83 hrs HW=742.64' (Free Discharge)					

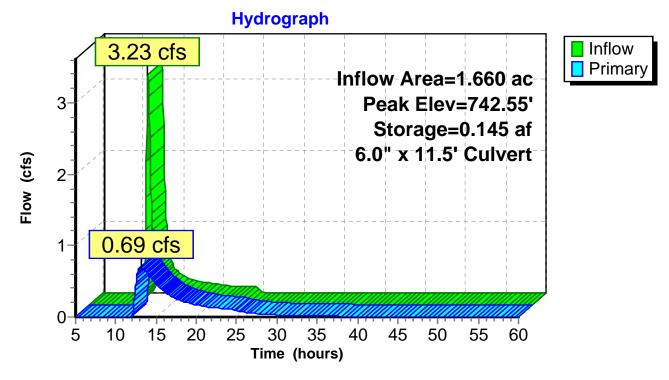
Primary OutFlow Max=0.77 cfs @ 12.83 hrs HW=742.64' (Free Discharge) -1=Culvert (Barrel Controls 0.77 cfs @ 2.0 fps)


Pond 6P:

Pond 7P:

Inflow = 3.28 cfs @ Outflow = 0.62 cfs @	Inflow Depth = 2.49" 12.19 hrs, Volume= 0.288 af 12.86 hrs, Volume= 0.282 af, Atten= 81%, Lag= 40.3 min 12.86 hrs, Volume= 0.282 af					
Routing by Stor-Ind method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 742.51' @ 12.86 hrs Surf.Area= 0.000 ac Storage= 0.121 af Plug-Flow detention time= 225.6 min calculated for 0.282 af (98% of inflow) Center-of-Mass det. time= 215.7 min (1,083.0 - 867.3)						
Volume Invert Avail.S	Storage Storage Description					
#1 742.00' 0	.356 af Custom Stage DataListed below					
Elevation Cum.Store (feet) (acre-feet) 742.00 0.000 743.50 0.356 Device Routing Invert	Outlet Devices					
#1 Primary 742.00'						
	CMP, mitered to conform to fill, $Ke= 0.700$					
	Outlet Invert= 741.88' S= 0.0104 '/' Cc= 0.900					
	n= 0.025 Corrugated metal					
Primary OutFlow Max=0.62 cfs @ 12.86 hrs HW=742.51' (Free Discharge) -1=Culvert (Barrel Controls 0.62 cfs @ 1.9 fps)						

Pond 7P:

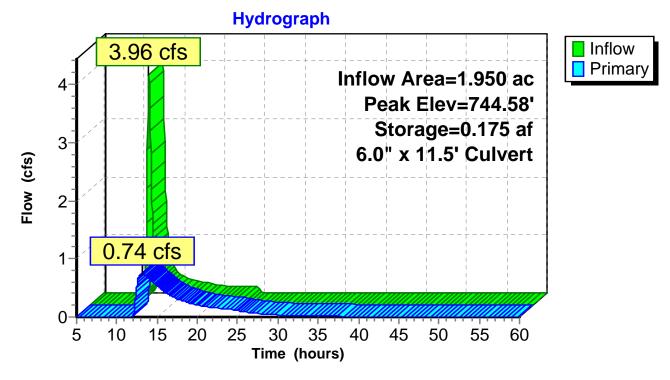

Pond 9P:

Inflow Area = Inflow = Outflow = Primary =	3.23 cfs @ 0.69 cfs @	Inflow Depth = 2.49" 2 12.29 hrs, Volume= 2 13.10 hrs, Volume= 2 13.10 hrs, Volume=	0.344 af 0.337 af, Atten= 79%, Lag= 48.6 min 0.337 af			
Peak Elev= 74 Plug-Flow det	Routing by Stor-Ind method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 742.55' @ 13.10 hrs Surf.Area= 0.000 ac Storage= 0.145 af Plug-Flow detention time= 232.4 min calculated for 0.337 af (98% of inflow) Center-of-Mass det. time= 220.5 min (1,095.5 - 875.0)					
Volume	Invert Avail.S	Storage Storage Descripti	on			
#1 7	42.00' 0	.392 af Custom Stage D	ataListed below			
Elevation (feet) 742.00 743.50	Cum.Store (acre-feet) 0.000 0.392					
Device Rout	ing Invert	Outlet Devices				
#1 Drim	any 742.00'	6.0" x 44 El Jong Culver				

#1 Primary 742.00' **6.0" x 11.5' long Culvert X 2.00** CMP, mitered to conform to fill, Ke= 0.700 Outlet Invert= 741.88' S= 0.0104 '/' Cc= 0.900 n= 0.025 Corrugated metal

Primary OutFlow Max=0.69 cfs @ 13.10 hrs HW=742.55' (Free Discharge) -1=Culvert (Barrel Controls 0.69 cfs @ 2.0 fps)

Pond 9P:

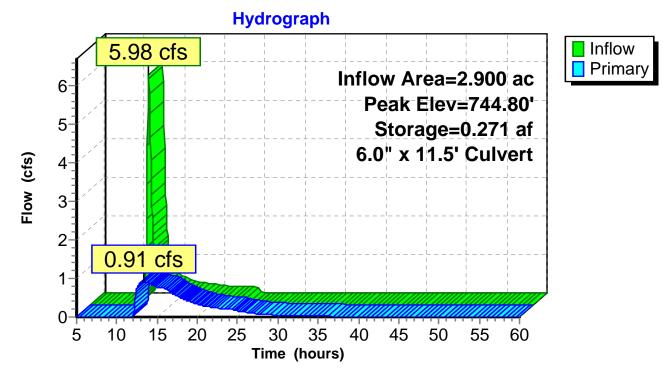

Pond 10P:

Outflow =	= 3.96 cfs = 0.74 cfs	@ 12.27@ 13.13	Depth = 2.49" hrs, Volume= hrs, Volume= hrs, Volume=	0.404 af 0.395 af, 0.395 af	Atten= 81%, Lag= 51.6 min
• •		· •	n= 5.00-60.00 hrs, dt		
			Area= 0.000 ac Sto		
			alculated for 0.395 at	f (98% of inf	low)
Center-of-M	lass det. time= 2	237.4 min (1,110.5 - 873.2)		
Volume	Invert Ava	il.Storage	Storage Description	1	
#1	744.00'	0.455 af	Custom Stage Dat	aListed belo	W
Elevation (feet)	Cum.Store (acre-feet)				
744.00	0.000				
745.50	0.455				

Device	Routing	Invert	Outlet Devices
-	Primary		6.0" x 11.5' long Culvert X 2.00 CMP, end-section conforming to fill, Ke= 0.500 Outlet Invert= 743.88' S= 0.0104 '/' Cc= 0.900
			n= 0.025 Corrugated metal

Primary OutFlow Max=0.74 cfs @ 13.13 hrs HW=744.58' (Free Discharge) -1=Culvert (Barrel Controls 0.74 cfs @ 2.0 fps)

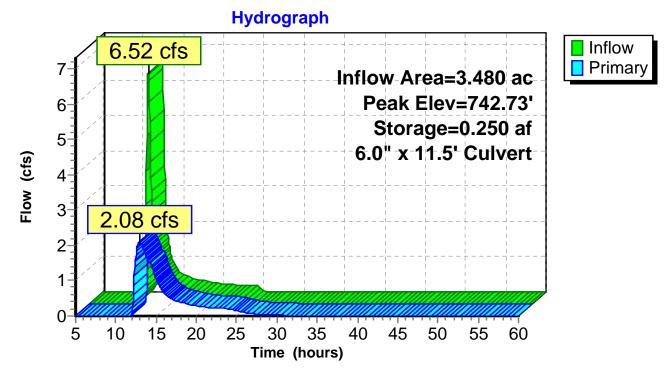
Pond 10P:



Pond 11P:

Inflow = 5.98 cfs @ Outflow = 0.91 cfs @	nflow Depth = 2.49" 12.26 hrs, Volume= 13.28 hrs, Volume= 13.28 hrs, Volume=	0.601 af 0.590 af, Atten= 85%, Lag= 61.4 min 0.590 af				
Routing by Stor-Ind method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 744.80' @ 13.28 hrs Surf.Area= 0.000 ac Storage= 0.271 af Plug-Flow detention time= 252.4 min calculated for 0.590 af (98% of inflow) Center-of-Mass det. time= 241.2 min (1,113.7 - 872.5)						
	orage Storage Description					
#1 744.00' 0.5	506 af Custom Stage Data	Listed below				
Elevation (feet) Cum.Store (acre-feet) 744.00 0.000 745.50 0.506						
745.50 0.500						
Device Routing Invert	Outlet Devices					
#1 Primary 744.00'	6.0" x 11.5' long Culvert X CMP, mitered to conform to Outlet Invert= 743.88' S= 0 n= 0.025 Corrugated metal	fill, Ke= 0.700				
Primary OutFlow Max=0.91 cfs @ 13.28 hrs HW=744.80' (Free Discharge)						

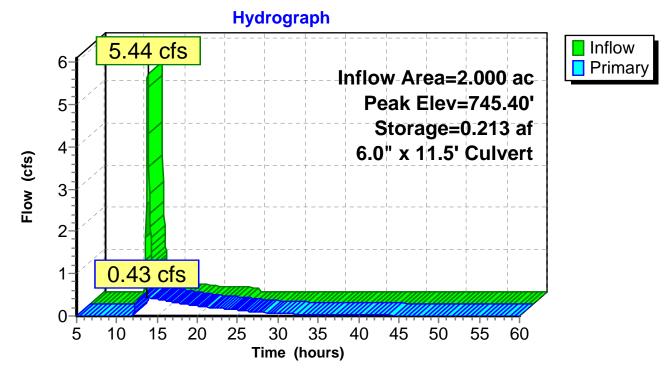
Primary OutFlow Max=0.91 cfs @ 13.28 hrs HW=744.80' (Free Discharge) 1=Culvert (Barrel Controls 0.91 cfs @ 2.3 fps)


Pond 11P:

Pond 12P:

Inflow = 6.52 cfs @ Outflow = 2.08 cfs @	12.91 hrs, Volume=	0.721 af 0.717 af, Atten= 68%, Lag= 35.9 min 0.717 af			
Routing by Stor-Ind method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 742.73' @ 12.91 hrs Surf.Area= 0.000 ac Storage= 0.250 af Plug-Flow detention time= 117.8 min calculated for 0.717 af (99% of inflow) Center-of-Mass det. time= 114.4 min (991.1 - 876.7)					
Volume Invert Avail.S	Storage Storage Description				
#1 741.80' 0	.403 af Custom Stage DataL	isted below			
Elevation Cum.Store (feet) (acre-feet) 741.80 0.000 743.30 0.403 Device Routing Invert	Outlet Devices				
#1 Primary 741.80'		4.00			
	CMP, mitered to conform to fi				
	Outlet Invert= 741.68' S= 0.0	-			
	n= 0.025 Corrugated metal				
Primary OutFlow Max=2.08 cfs @ 12.91 hrs HW=742.73' (Free Discharge)					

Pond 12P:


Pond 13P:

Inflow Are	ea =	2.000 ac,	Inflow Depth = 2.49"		
Inflow	=	5.44 cfs @	12.13 hrs, Volume=	0.415 af	
Outflow	=	0.43 cfs @	13.66 hrs, Volume=	0.389 af, Atten= 92%, Lag= 92.1 min	
Primary	=	0.43 cfs @	13.66 hrs, Volume=	0.389 af	
Routing by Stor-Ind method, Time Span= 5.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 745.40' @ 13.66 hrs Surf.Area= 0.000 ac Storage= 0.213 af Plug-Flow detention time= 448.2 min calculated for 0.389 af (94% of inflow) Center-of-Mass det. time= 414.4 min (1,277.0 - 862.6)					
#1	745.0				
#1	745.00	J 0.	800 af Custom Stage Da		
Elevation (feet 745.00 746.50	t) (ad 0	m.Store <u>cre-feet)</u> 0.000 0.800			
Device	Routing	Invert	Outlet Devices		
#1	Primary	745.00'	6.0" x 11.5' long Culver CMP, mitered to conform Outlet Invert= 744.88' S=	to fill, Ke= 0.700	

Primary OutFlow Max=0.43 cfs @ 13.66 hrs HW=745.40' (Free Discharge) ☐ 1=Culvert (Barrel Controls 0.43 cfs @ 1.7 fps)

n= 0.025 Corrugated metal

Pond 13P:

SURFACE WATER MANAGEMENT SYSTEM FILL AREA NORTHWEST OF REILLY AIRFIELD

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

Client: <u>Matrix</u> Project: <u>McC</u>	Clellan Final Co	over Systems	Project/Proposal #: _	GR3762 Task #: 05
	Design & Anal Northwest Of F		urface Water Managem	ent System For Fill Area
COMPUTATIONS BY:	Signature	<u>H.M.</u>	A.	09/15/2006
	Printed Name	Mehmet Isc	cimen	DATE
	and Title	Senior Staf	fEngineer	
ASSUMPTIONS AND PROCEDUR CHECKED BY:	RES Signature	Tictor p C	Lepton	09/21/2006
(Peer Reviewer)	Printed Name	Victoria Ch	V	DATE
COMPUTATIONS CHECKED BY:	Signature γ	Engineer	(entr)	09/21/2006
	Printed Name	Victoria Ch		DATE
	and Title	Engineer		
COMPUTATIONS BACKCHECKED BY:	Signature	<u>II. ///</u>	9	09/25/2006
(Originator)	Printed Name and Title	Mehmet Isc	DATE	
APPROVED BY:	Signature	Senior Staf		09/25/2006
(PM or Designate)	Printed Name and Title	Michael J. 1 Principal	DATE	
APPROVAL NOTES:				
REVISIONS (Number and initial all	revisions)			
NO. SHEET DA	ATE	BY	CHECKED BY	APPROVAL

GEG	DSYNTE	CC CONSULT	ANTS			PAGE	OF
Written	by: <u>Mehme</u>	Iscimen	Date: <u>09/15/06</u>	Reviewed by:	Victoria Cheplak	I	Date: <u>09/21/06</u>
Client:	Matrix	Project: <u>M</u>	cClellan Final Cover Systems	Pro	ject/Proposal No.: <u>GR</u>	<u>13762 T</u> asi	k No.: 0 <u>5</u>
			TABLE OF C	CONTENTS			
	EXECU	TIVE SUMMAR	Y				3
	PURPO	SE					4
	SURFA	CE WATER MA	NAGEMENT SYS	TEM - OVE	RVIEW		4
	DESIGN	APPROACH					5
	Pr	1	LOGY Vatershed Analysis Analysis of Surface V	Water Manag	gement System		6 6 6
	SOFTW	ARE					7
	MAJOR 0 0 0 0 0 0	Rainfall Distrib Rainfall Depths	s l Groups (HSG) s (CN) Diagram				7 7 7 7 8 8 8
	Ste	I OF SURFACE ormwater Detenti rimeter Channels		EMENT SY	STEM COMPO	NENTS	9 9 10
	COMPU	TATIONS USIN	IG HYDROCAD [™]				10
	СОМРА		E- VERSUS POST-	DEVELOP	MENT DISCHA	RGES	11
	REFER	ENCES					12

GEOSYNTEC CONSULTANTS						PAGE	OF
Written by:	Mehmet Iscimen	_Date:	09/15/06	_Reviewed by: _	Victoria Cheplak		Date: 0 <u>9/21/06</u>

Client: Matrix

Project: <u>McClellan Final Cover Systems</u> Pro

_____Project/Proposal No.: GR3762 _____Task No.: 05_____

TABLE OF CONTENTS (Continued)

List of Attachments

- 1. Topographic Map (Pre-Development)
- 2. Surface Water Management System: Grading Plan
- 3. Pre-Development Watershed Delineation Map
- 4. Post-Development Watershed Delineation Map
- 5. Rainfall Distribution and Rainfall Depths
- 6. Hydrologic Soil Groups
- 7. Curve Numbers
- 8. HydroCADTM Nodal Network Diagrams
- 9. Properties Of Subareas
- 10. Stormwater Detention Pond Outlet Structures
- 11. Stage-Storage Relationship
- 12. Computations Using HydroCADTM: Pre-Development
- 13. Computations Using HydroCADTM: Post-Development

GEOSYNTEC C	ONSULTANT	5		PAGEOF
Written by: <u>Mehmet Iscimen</u>	1		_Reviewed by: <u>Victoria Cheplak</u>	Date: 0 <u>9/21/06</u>
Client: Matrix	Project: <u>McClellan</u>	Final Cover Systems	Project/Proposal No.: GR37	762 Task No.: 05

EXECUTIVE SUMMARY

In this calculation package, surface water management system design for Fill Area North West of Reilly Airfield (FANWR) has been evaluated. Design criteria was established based on the "Alabama Handbook for Erosion Control, Sediment Control, and Stormwater Management on Construction Sites", discussions with the City of Anniston, and general practice experience related to stormwater management system designs. The criteria included the comparison of stormwater runoff from the site under pre-development and post–development conditions and the function of the stormwater management system under the 25-year and 100-year, 24-hour design storms.

In order to analyze and design the stormwater management system, a variety of parameters including hydrologic soil types, rainfall distribution and depths, and topographical information such as slopes, elevations, and areas, were evaluated for the site. Using the methodology and procedures described in Soil Conservation Service's Technical Release-55 [SCS TR-55, 1986], storm water runoff rates and volumes were calculated.

Results of this analysis indicate that the peak stormwater discharge rate from the site under post-development conditions with the stormwater management system is less than peak stormwater discharge rate under pre-development conditions. The stormwater management system consists of a stormwater detention pond at the northeast corner of the site to provide stormwater detention and sediment storage, as well as two perimeter channels to convey flow to the pond.

GEOSYNTEC CONSULTANTS					PAGE _	OF
Written by: <u>Mehmet Iscimen</u>	_Date:	09/15/06	_Reviewed by:	Victoria Cheplak		_Date: 0 <u>9/21/06</u> _

Client: Matrix

DESIGN & ANALYSIS OF THE SURFACE WATER MANAGEMENT SYSTEM

PURPOSE

The purpose of this calculation package is to present the analysis and design of the surface water management system for the site of the Fill Area Northwest of Reilly Airfield (FANWR). The following are the specific goals of this package:

- o establish the design criteria;
- o calculate the pre-development peak discharges leaving the site;
- design the components of the surface water management system, including final cover system, perimeter channels, and the sedimentation basin and appurtenances;
- o calculate the post-development peak discharges leaving the site; and
- compare the calculated post-development discharges with the calculated predevelopment discharges.

SURFACE WATER MANAGEMENT SYSTEM - OVERVIEW

The topographic map of FANWR and the plan view of the proposed surface water management system are provided in Attachments 1 and 2, respectively. The topographic map indicates the existing fill area perimeter limit, while the proposed surface water management system indicates a modified fill area perimeter limit as well as a limit of work. The fill area perimeter limit is modified to reflect the portion of the existing fill area that encroaches into the footprint of the right-of-way of the proposed industrial access road. The waste located at this area will be removed and re-located to other sections of the landfill. As a result, the southern perimeter limit (waste limit) of FANWR at the post-development condition will be different than the limit at the pre-development condition.

The cover system will have varying slopes depending on the existing fill topography and stormwater routing practices. Side slopes (perimeter slopes) of the cover system will be 33 percent (i.e., 3H:1V) until natural ground surface elevations are reached with the exception of the area south west of the landfill (i.e., where the waste will be relocated) that has side slopes of 8 percent. The cover system of the FANWR generally slopes to the north side of the Fill Area and ultimately directed to the proposed stormwater detention pond.

However, runoff from two small areas is not directed to the stormwater management system. A small area on the south side of the landfill crest slopes to the south. A preliminary analysis

GEOSYNTEC CONSULTANTS	PAGE	OF
Written by: <u>Mehmet Iscimen</u> Date: <u>09/15/06</u>	Reviewed by: <u>Victoria Cheplak</u>	_Date: 0 <u>9/21/06</u>
Client: Matrix Project: McClellan Final Cover Systems	Project/Proposal No.: <u>GR3762 T</u>	ask No.: 0 <u>5</u>

demonstrates that the stormwater runoff from this area is relatively small compared to the runoff from the rest of the landfill. Furthermore, the majority of the southern grading is located within the foot-print of industrial access road and is temporary. As a result, this area will be allowed to discharge freely in the interim condition. Additionally, an area at the northwest corner flows to the northwest, away from the stormwater detention pond, under both current and proposed conditions. The stormwater runoff from the northwest slope is comparable at pre- and post-development conditions. While the post-development slopes are steeper than pre-development slopes, the contributing area is smaller under the post development conditions, which acts to balance the runoff generated. Therefore, no further design is recommended and northwest slopes will be allowed to discharge freely, as well.

The stormwater detention pond is located northeast of the FANWR, outside of the site perimeter. It is designed as a trapezoidal channel with a constant 2 percent longitudinal slope, 3H:1V side slopes and a controlled outflow structure. Stormwater runoff from the eastern perimeter slope and a small portion of the northern perimeter slope will be collected via v-shaped channels and conveyed to the detention pond.

The runoff collected in the stormwater detention pond will be released through a principal spillway, composed of a vertical riser pipe and a horizontal barrel pipe directing flow towards the ravine located to the east of the FANWR. In addition to the principal spillway, an emergency spillway is designed to discharge stormwater runoff in excess of the capacity of the detention pond.

DESIGN APPROACH

The surface water management system for the FANWR is designed to meet requirements of the "Alabama Handbook for Erosion Control, Sediment Control, and Stormwater Management on Construction Sites" (herein referred as ASWCC [2003]) [Alabama Soil and Water Conservation Committee, 2003]. ASWCC [2003] does not specifically recommend a certain storm event for design purposes, however it does state: "In many localities, a 10-year design storm is specified to preserve the effectiveness of downstream drainage structures which were originally designed to pass a 10-year pre-development storm. Other localities require that larger storms (i.e., 50-100 year events) must be detained and released at a controlled rate to reduce the downstream effects of major storms." Based on this statement, discussions with the City of Anniston, and general practice experience related to stormwater management system designs, the following criteria were selected for the stormwater management system design for the FANWR:

GeoSyntec	<u>Consu</u>	LTANTS		PAGEOF
Written by: <u>Mehmet Iscin</u>	nen	Date: <u>09/15/06</u>	Reviewed by: <u>Victoria Cheplak</u>	Date: 0 <u>9/21/06</u>
Client: Matrix	Project:	McClellan Final Cover Systems	Project/Proposal No.: GR37	62 Task No.: 05

- Design, construct, operate, and maintain a runoff management system to collect and control at least the peak flow volume resulting from a 25-year, 24-hour design storm event; and
- Design holding facilities (e.g., detention ponds) associated with run-on and runoff control systems to detain the water volume resulting from a 25-year, 24-hour design storm event with 0.5-feet of freeboard, and to divert at least the peak flow resulting from a 100-year, 24-hour design storm event through the emergency spillway.
- Design conveyance facilities (e.g., perimeter channels) to provide a minimum of 0.25 feet of freeboard for calculated peak flows from the 25-year 24-hour design storm, and not overtop for calculated peak discharges from the 100-year 24-hour design storm.
- Design the crest elevation of the principal spillway inlet to provide the minimum storage requirement, i.e. the runoff resulting from a 2-year, 24-hour design storm event and the required sediment storage (specified below).

In addition to the specified design storm criteria discussed above, sediment storage requirements were also considered for the design of the stormwater detention pond. Specifically, ASWCC [2003] states that "*the sediment storage volume should be at least 67 cubic yards per acre of the total drainage area of the basin*". This volume provides for sediment storage equivalent to ¹/₂-inch per acre of the total drainage area of the pond.

ANALYSIS METHODOLOGY

Pre-development Watershed Analysis

Attachment 1 presents the topographic map for the general site vicinity and the boundary of the FANWR. Attachment 3 presents the delineation of the natural watershed in the vicinity of the site on the topographic map. This drainage area is the basis for the pre-development watershed analysis.

Post-Development Analysis of Surface Water Management System

Attachment 2 presents the topographic map for the general site vicinity of the FANWR for the post-development conditions. The map also identifies the locations of the stormwater detention pond and perimeter channels.

Attachment 4 presents a Schematic Plan of the surface water management system. The plan shows the delineation of subareas on the cover system. The post-development analysis of the

GEOSYNTEC	I	PAGEOF		
Written by: <u>Mehmet Iscir</u>	men	Date: 09/15/06	Reviewed by: <u>Victoria Cheplak</u>	Date: 09/21/06
Client: Matrix	Project:	McClellan Final Cover Systems	Project/Proposal No.: GR3762	Task No.: 05

surface water management system is based on the parameters calculated/estimated from this plan.

SOFTWARE

Stormwater discharges are estimated using the computer program "HydroCADTM" [HydroCADTM 7.1, 2005]. The program uses hydrology procedures presented in Soil Conservation Service's TR-55 [SCS TR-55, 1986]. Hydrographs generated within the computer program are routed through a user specified network of reaches using documented hydraulic routing techniques.

MAJOR CALCULATION PARAMETERS

- **Rainfall Distribution**: Attachment 5 [SCS TR-55, 1986] shows the location of the site on the rainfall distribution map of the United States. The site is located in Calhoun County, Alabama, which is categorized by SCS Type II Rainfall Distribution.
- **Rainfall Depths:** Attachment 5 also presents the site location and the rainfall depth for the 2-year, 25-year, and 100-year, 24-hour design storms. The 2-year rainfall depth is used for calculating the times of concentration for hydrologic modeling. The rainfall depths are shown in the following table.

Return	Duration	Design Rainfall	
Period	(hours)	Depth	
(years)		(inches)	
2	24	3.9	
25	24	6.7	
100	24	8.0	

• **Hydrologic Soil Groups (HSG):** Attachment 6 presents the regional soils maps for the vicinity of the FANWR and Borrow Area No.2 located southeast of Reilly Airfield. Major soil units found within the areas of interest and the corresponding Hydrologic Soil Groups (HSGs) are listed in the Table A6-1 in Attachment 6. HSG B was used for the pre-development analyses performed in this package. For the final cover system, it is anticipated that a local area adjacent to Reilly Airfield southeast of the site will be used as a borrow source. This area also consists of soils characterized as HSG B.

GEOSYNTEC	Р	AGEOF		
Written by: <u>Mehmet Iscin</u>	nen	Date: <u>09/15/06</u>	_Reviewed by:Victoria Cheplak	Date: 09/21/06
Client: Matrix	Project:	McClellan Final Cover Systems	Project/Proposal No : GR3762	Task No.: 05

Therefore, for the purposes of hydrologic modeling performed in this package, HSG B is also assumed for the post-development analyses.

• **Curve Numbers (CN):** CNs were selected based on Table 2.2a and 2.2c of SCS TR-55, 1986. The following table summarizes the CNs chosen for the analyses performed in this package. The complete version of both tables can be found in Attachment 7.

Area Description	Condition	HSG	CN
Pre-Development Conditions of the FANWR	Woods – Good Condition	В	55
FANWR Final Cover System	Open Space, Good Hydrologic Condition (Grass Cover>75%)	В	61
Stormwater Detention Pond	Impervious Area	В	98

- **Nodal Network Diagram:** Attachment 8 presents a diagram of the nodal network used in HydroCADTM for the pre-development and post-development analysis.
 - <u>Pre-development Nodal Network:</u> In the pre-development scenario, only one subcatchment is modeled (identified in Attachment 3).
 - <u>Post-development Nodal Network:</u> Subcatchments as depicted in the Schematic Surface Water Management Plan (Attachment 4) were generally routed to reach segments and ultimately discharge into the stormwater detention pond.
- **Properties of Subareas:** Attachment 9 presents all properties of the subareas used in HydroCADTM for the pre- and post-development analysis. The computed area (acres) of each subarea, curve number, and computations for times of concentration are included in Attachment 9.

Computations for travel time for sheet flow are performed using the equation for Manning's kinematic solution [SCS TR-55, 1986]:

GEOSYNTEC CONSULTANTS PAGE __OF___ Written by: __Mehmet Iscimen Date: 09/15/06 __Reviewed by: __Victoria Cheplak ___Date: 09/21/06 _____

Client: Matrix

Project: McClellan Final Cover Systems

er Systems Project/Proposal No.: <u>GR3762 T</u>ask No.: 0<u>5</u>

$$T_t = \frac{0.007(nL)^{0.8}}{(P)^{0.5} S^{0.4}}$$

where, T_t =travel time (hr), n=Manning's roughness coefficient, n=0.15 for short grass and n=0.80 for woods with dense underbrush, L=flow length (ft), P=2-year, 24-hour rainfall depth (inches), and S=land slope (ft/ft).

After a maximum of 300 feet, sheet flow is assumed to become shallow concentrated flow (i.e., upland flow). Travel times for shallow concentrated flow are estimated using the methodology presented in TR-55 [SCS TR-55, 1986]:

$$T_t = \frac{L}{K S^{0.5}}$$

where, T_t = travel time (seconds), L = flow length (ft), S = land slope (ft/ft), K = 7.0 for short grass pasture and K = 2.5 for forest with heavy litter.

DESIGN OF SURFACE WATER MANAGEMENT SYSTEM COMPONENTS

Stormwater Detention Pond

Attachment 10 provides details of the stormwater detention pond outlet structures, including the primary spillway, emergency spillway and embankment. The principal spillway consists of a vertical, 15-inch diameter, corrugated metal riser pipe connected to a horizontal, 10-inch diameter, corrugated metal barrel pipe which discharges towards the Ravine located east of the FANWR. The vertical riser pipe components include a 15-inch diameter, horizontal orifice with trash rack and anti-vortex device at elevation 728.50 feet and 1-inch diameter vertical orifices (perforations) distributed over its height at 6-inch vertical spacing. The vertical orifices will allow the slow drainage of the runoff volume detained below the primary spillway invert. The emergency spillway is designed as a trapezoidal cross-section with 13-feet base width, 1-foot depth and 33-percent side slopes (3H:1V), at a crest elevation of 730.00 feet.

Riprap slope protection is recommended at the emergency spillway. The following equation was used to estimate the riprap size required for lining the channels (ASWCC [2003]):

$$d_{50} = [QS_0^{0.58} / (3.93^*10^{-2})]^{(1/1.89)}$$

GEOSYNTEC CONSULTANTS PAGEOF				
Written by: <u>Mehmet Isci</u>	men		_ Reviewed by: Victoria Cheplak	Date: 09/21/06
Client: Matrix	Project: McClellan F	inal Cover Systems	Project/Proposal No.: GR3	762 Task No.: 05

where, d_{50} =minimum median riprap diameter (in), Q=net discharge through the emergency spillway from a 100-year, 24-hour storm event (cfs), and S₀=longitudinal slope (ft/ft). Required d_{50} is found to be 14.5-inches. This calculation is presented in Attachment 10.

Attachment 11 presents the stage-storage relationship of the stormwater detention pond. Based on criteria recommended by the ASWCC [2003], a sediment storage capacity of 67 cubic yards per acre of disturbed area is provided in addition to a detention volume to accommodate the runoff from the 25-year, 24-hour design storm without overtopping the emergency spillway. The total design capacity of the stormwater detention pond is approximately 41,000 cubic-feet at the emergency spillway invert elevation of 730.00 feet. The sediment storage capacity was calculated as approximately 11,760 cubic-feet. It is recommended that the sediment be cleaned out when half (50 percent) of the required sediment storage volume has been filled with sediment. Based on a stage-storage relationship as shown in Attachment 11, a sediment cleanout elevation of 725.8 feet is recommended.

Based on estimations using HydroCADTM, the water level at the stormwater detention pond will not reach the emergency spillway crest elevation at a 100-year, 24-hour storm event.

Perimeter Channels

Perimeter channels located on both the northern and eastern perimeter are designed with a V-shaped cross-section, 33-percent side slopes (3H:1V) and 1-foot depth. The northern perimeter channel has an average longitudinal slope of 3.5 percent whereas the eastern channel has varying longitudinal slopes ranging from 2 to 14 percent. Velocities in the channels do not exceed 5.0 feet/second for the 25-year, 24-hour storm event and as a result, grass lining is appropriate.

COMPUTATIONS USING HydroCADTM

Calculations were performed using HydroCADTM for the input parameters discussed in the previous section for the 25-year, 24-hour design storm and the 100-year, 24-hour design storm. The computer program results for the pre-development and post-development analyses are presented in Attachments 12 and 13.

GEOSYNTEC CONSUL	LTANTS	РА	GEOF
Written by: <u>Mehmet Iscimen</u>	Date: <u>09/15/06</u>	_Reviewed by:Victoria Cheplak	Date: 09/21/06
Client: <u>Matrix</u> Project:	McClellan Final Cover Systems	Project/Proposal No.: GR3762	<u>T</u> ask No.: 0 <u>5</u>

COMPARISON OF PRE- VERSUS POST-DEVELOPMENT DISCHARGES

The following table summarizes the results from Attachments 12 and 13 for pre- and post-development discharges from the site for the 25- and the 100-year, 24-hour design storms. As shown in the table, the post-development discharges with the stormwater management system described above are less than the pre-development discharges for design storms that were considered in this analysis.

Design Rainfall Event	Design Rainfall Depth (inch)	Peak Pre-Development Discharge (cfs)	Peak Post-Development Discharge (cfs)
25-year, 24-hour	6.7	3.81	3.33
100-year, 24-hour	8.0	5.75	3.58

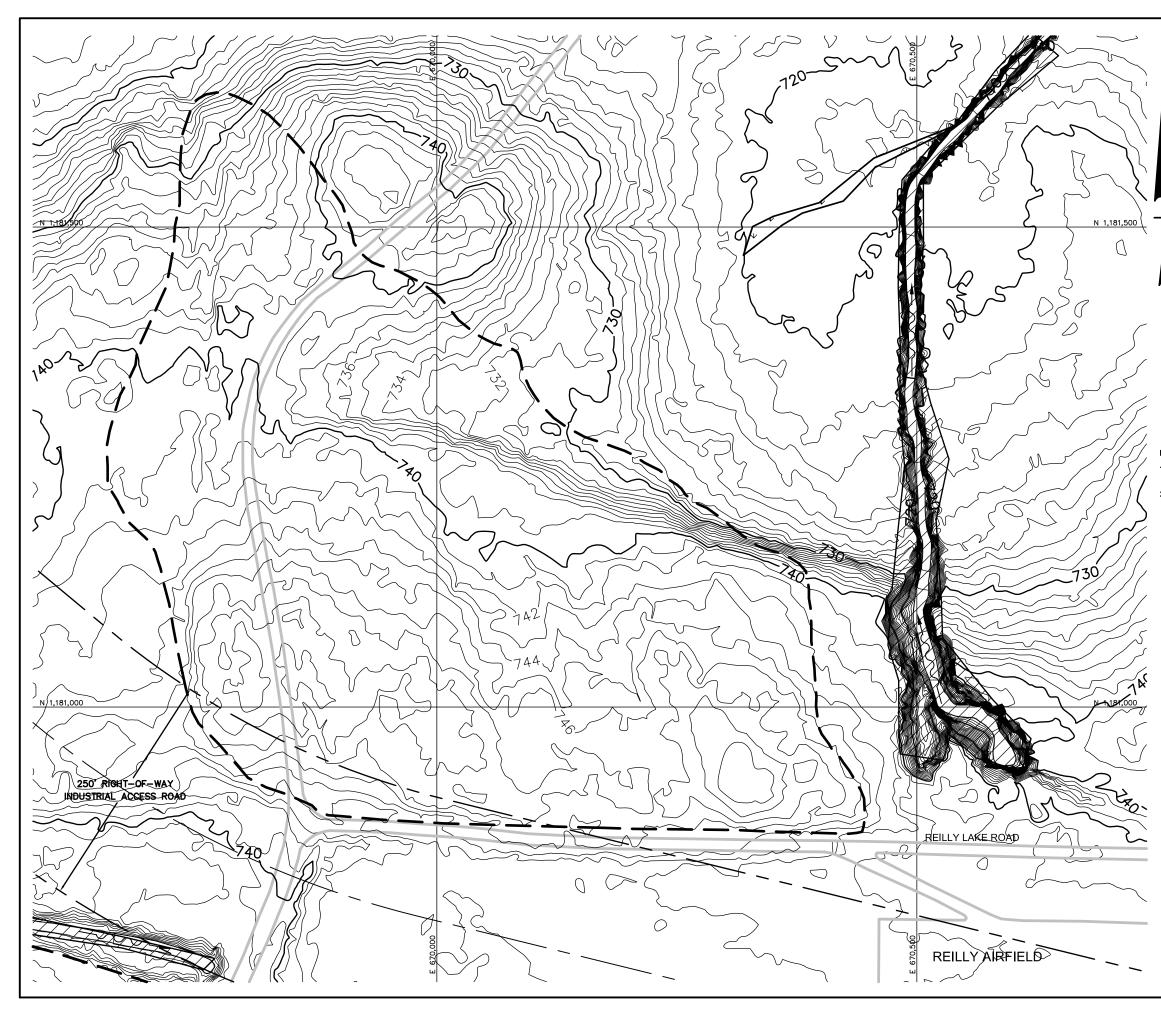
The following table summarizes the channel and stormwater detention pond design depths, peak flow depths, and available freeboard requirements. As indicated, all peak depths meet the design requirements.

Design Rainfall Event		Stormwater Detention Pond (ft)	Northern Perimeter Channel (ft)	Eastern Perimeter Channel (ft)
	Design Depth	9.00	1.00	1.00
25-year, 24-hour	Peak Depth	6.84	0.67	0.42
	Freeboard	2.16	0.33	0.58
	Design Depth	9.00	1.00	1.00
100-year, 24-hour	Peak Depth	7.92	0.76	0.48
	Freeboard	1.08	0.24	0.52

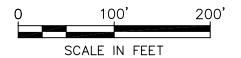
GEOSYNTEC CONSULTANTS	PAGEOF
Written by: Mehmet Iscimen Date: 09/15/06 Reviewed by: Victor	ria Cheplak Date: 0 <u>9/21/06</u>
Client: <u>Matrix</u> Project: <u>McClellan Final Cover Systems</u> Project/Pro	oposal No.: <u>GR3762 T</u> ask No.: 0 <u>5</u>

REFERENCES

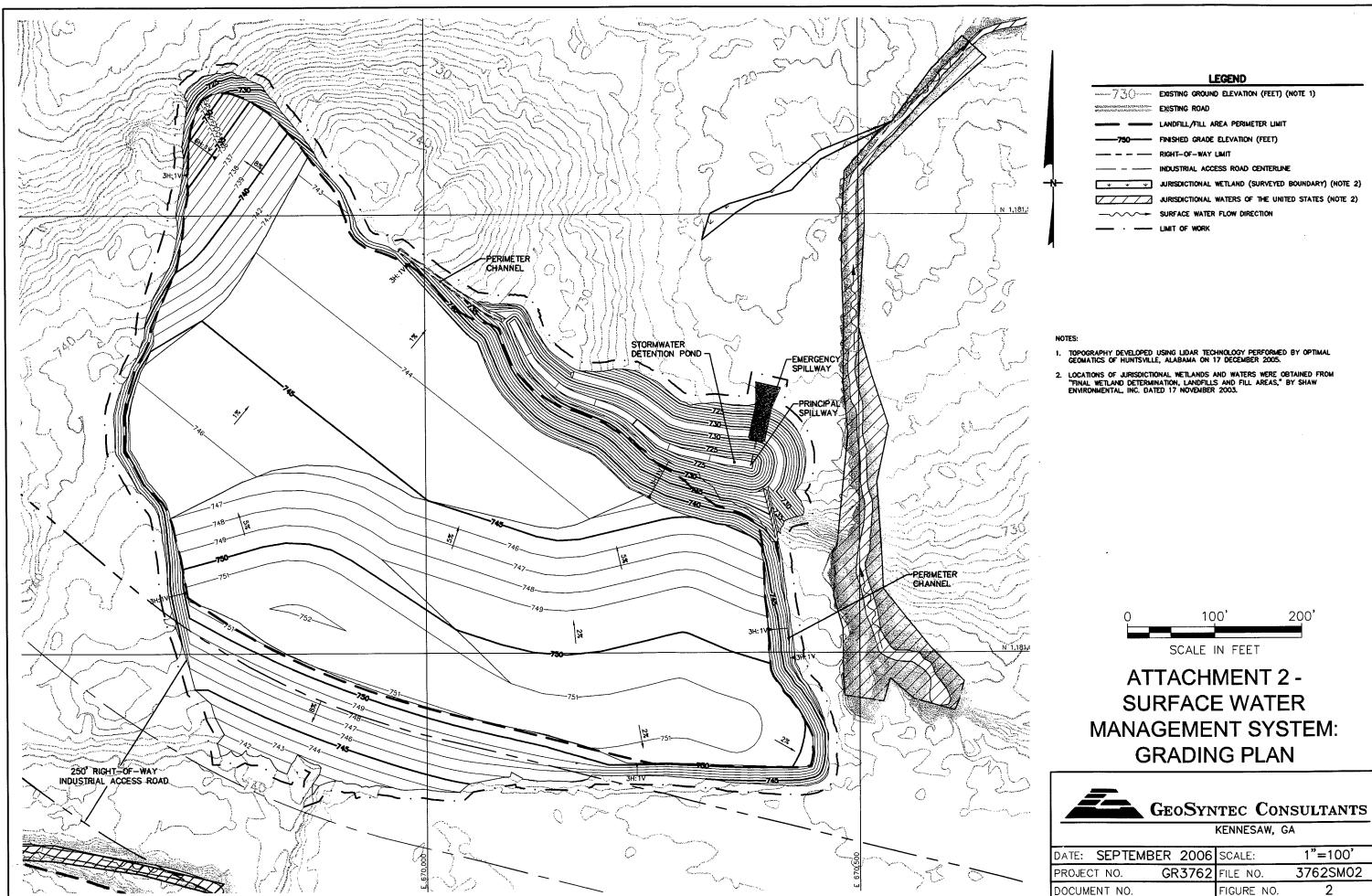
Alabama Soil and Water Conservation Committee (ASWCC), "Alabama Handbook for Erosion Control, Sediment Control, and Stormwater Management on Construction Sites", 2003.


Chadwick, Andrew and Morfett, John, "*Hydraulics in Civil and Environmental Engineering*", 2nd edition, E&FN Spon, 1993, London.

HydroCAD, "*HydroCAD*[™]: Stormwater Modeling System, Version 7', HydroCAD Software Solutions LLC., 2nd ed., Chocorua, New Hampshire, 2004.

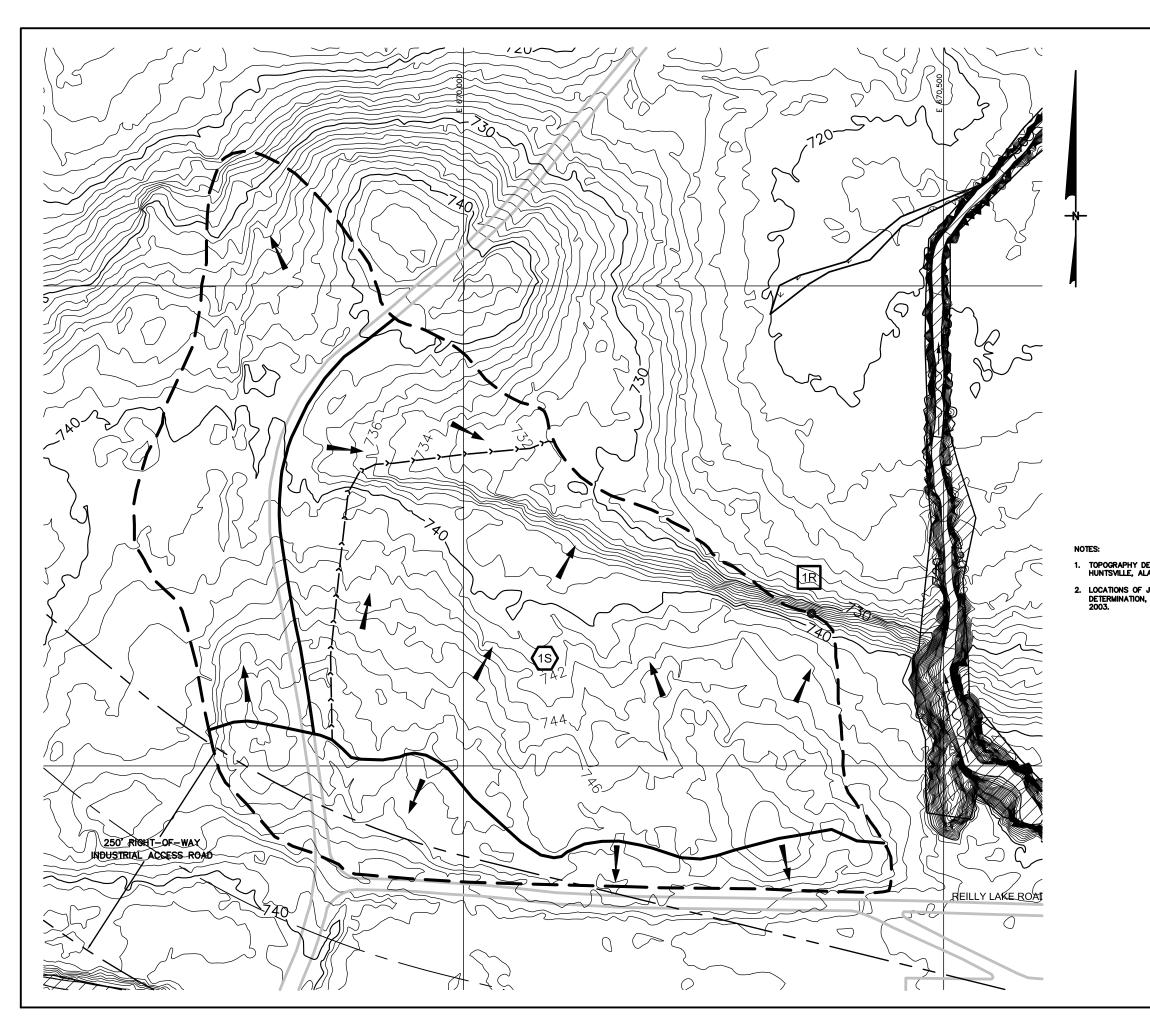

SCS, "*TR-55 Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55)*", United States Department of Agriculture, Soil Conservation Service, 2nd ed., Washington, D.C., 1986.

Topographic Map (Pre-Development)


	EXISTING ROAD
	LANDFILL/FILL AREA PERIMETER LIMIT
	RIGHT-OF-WAY LIMIT
	INDUSTRIAL ACCESS ROAD CENTERLINE
	ψ ψ ψ JURISDICTIONAL WETLAND (SURVEYED BOUNDARY) (NOTE 2)
	JURISDICTIONAL WATERS OF THE UNITED STATES (NOTE 2)
-	
ES:	
	GRAPHY DEVELOPED USING LIDAR TECHNOLOGY PERFORMED BY OPTIMAL
GEON	AATICS OF HUNTSVILLE, ALABAMA ON 17 DECEMBER 2005.
LOC/	NTIONS OF JURISDICTIONAL WETLANDS AND WATERS WERE OBTAINED FROM "FINAL AND DETERMINATION, LANDFILLS AND FILL AREAS," BY SHAW ENVIRONMENTAL, INC
DATE	D 17 NOVEMBER 2003.

ATTACHMENT 1 -TOPOGRAPHIC MAP (PRE-DEVELOPMENT)

GEOSYNTEC CONSULTANTS				
KENNESAW, GA				
DATE: SEPTEMBER 2006	SCALE:	1"=100'		
PROJECT NO. GR3762	FILE NO.	3762SM01		
DOCUMENT NO. FIGURE NO. 1				


Surface Water Management System: Grading Plan

5:35:13 PM, 11/8/2006 **IENT\3762SM02** MANA GR3762-05\STORMWATER

	ITEC CON KENNESAW, G	SULTANTS
DATE: SEPTEMBER 2006	SCALE:	1"=100'
PROJECT NO. GR3762	FILE NO.	3762SM02
DOCUMENT NO.	FIGURE NO.	2

Pre-Development Watershed Delineation Map

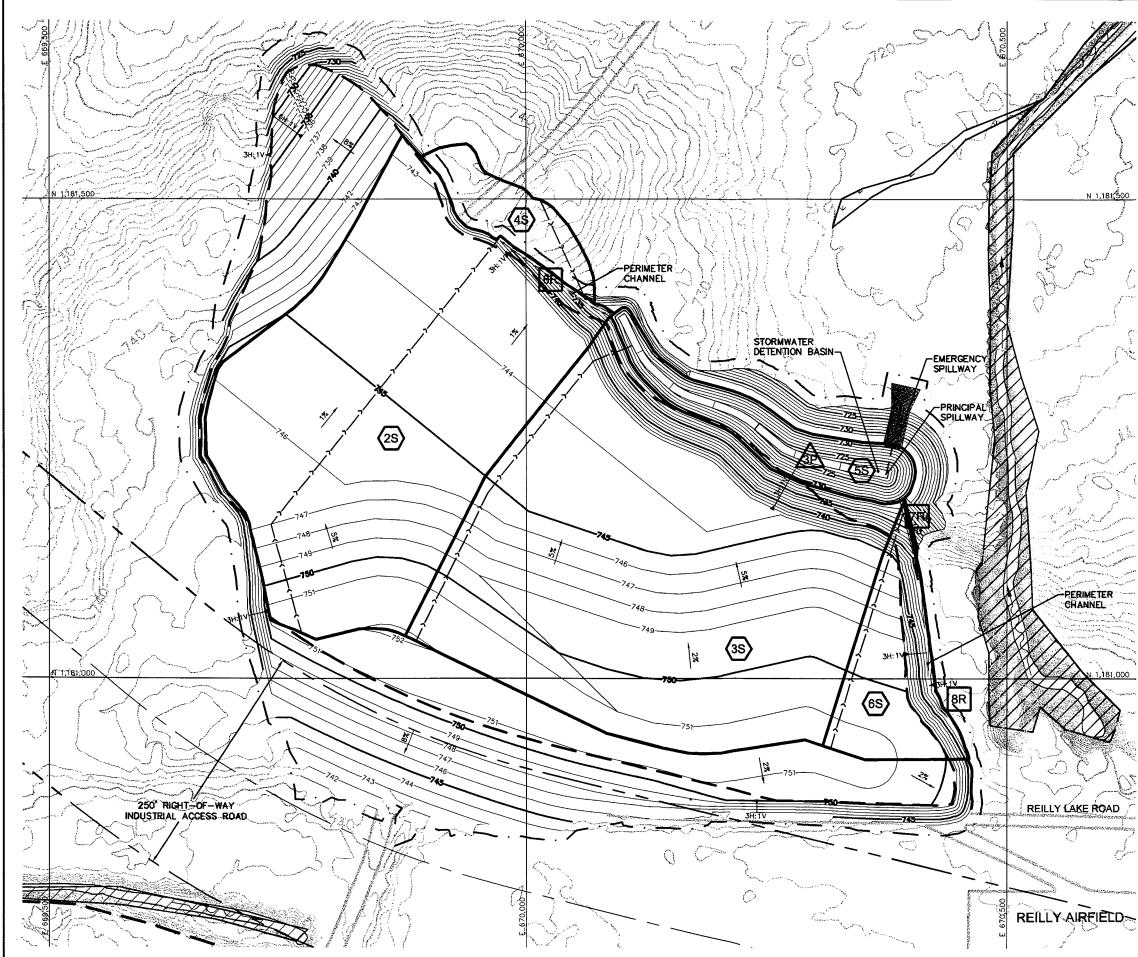

—730—	EXISTING GROUND ELEVATION (FEET) (NOTE 1)			
	EXISTING ROAD			
	LANDFILL/FILL AREA PERIMETER LIMIT			
	INDUSTRIAL ACCESS ROAD CENTERLINE JURISDICTIONAL WETLAND (SURVEYED BOUNDARY) (NOTE 2)			
	JURISDICTIONAL WATERS OF THE UNITED STATES (NOTE 2)			
	SURFACE WATER FLOW DIRECTION			
	SUBCATCHMENT BOUNDARY			
	FLOW PATH FOR T _C CALCULATION			
	SUBCATCHMENT DESIGNATION			
1R	REACH DESIGNATION			
	FLOW DIRECTION (ON FANWRA)			
0	Point of interest			
Developed Using Li	DAR TECHNOLOGY PERFORMED BY OPTIMAL GEOMATICS OF			
ABAMA ON 17 DECEMBER 2005.				
JURISDICTIONAL WETLANDS AND WATERS WERE OBTAINED FROM "FINAL WETLAND , LANDFILLS AND FILL AREAS," BY SHAW ENVIRONMENTAL, INC. DATED 17 NOVEMBER				
	0 100' 200'			
	SCALE IN FEET			
	ATTACHMENT 3 -			
	PRE-DEVELOPMENT			
	WATERSHED			
	DELINEATION MAP			
				
	GEOSYNTEC CONSULTANTS			
	KENNESAW, GA			
DATE:	SEPTEMBER 2006 SCALE: 1"=100'			
PROJEC	T NO. GR3762 FILE NO. 3762SM03			

FIGURE NO.

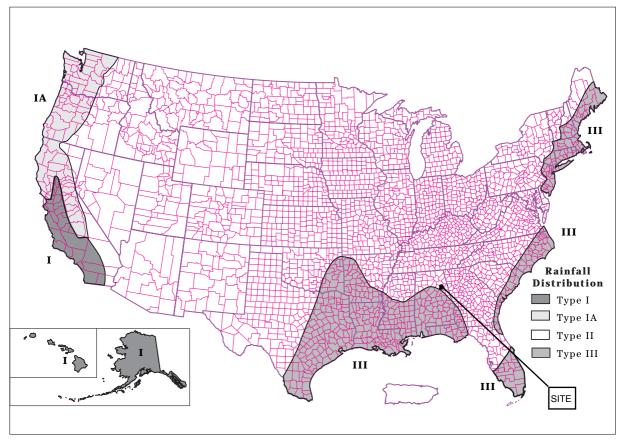
3

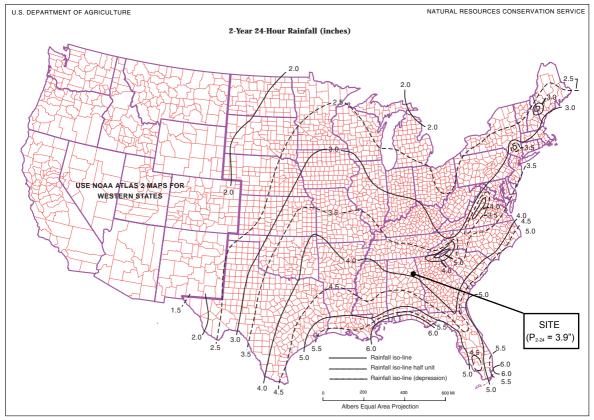
DOCUMENT NO.

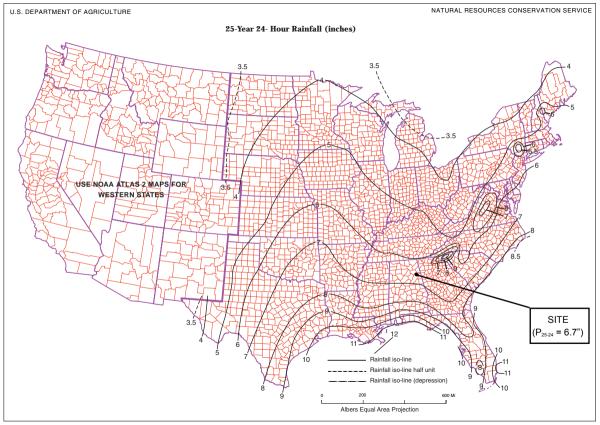
Post-Development Watershed Delineation Map

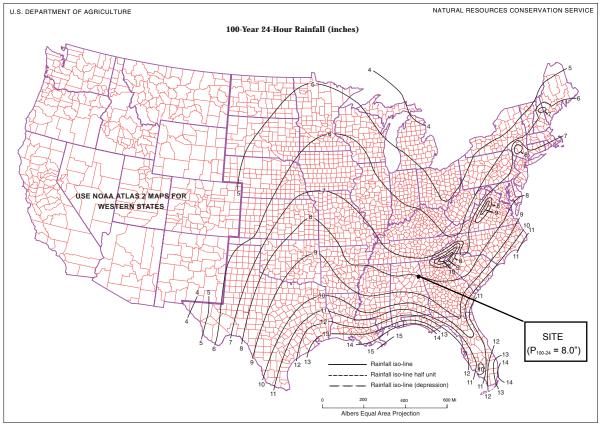
LEGEND			
730	EXISTING GROUND ELEVATION (FEET) (NOTE 1)		
	EXISTING ROAD		
<u> </u>	LANDFILL/FILL AREA PERIMETER LIMIT		
750	FINISHED GRADE ELEVATION (FEET)		
	RIGHT-OF-WAY LIMIT		
	INDUSTRIAL ACCESS ROAD CENTERLINE		
¥ ¥ ¥	JURISDICTIONAL WETLAND (SURVEYED BOUNDARY) (NOTE 2)		
$\mathbb{Z}/\mathbb{Z}/\mathbb{Z}$	JURISDICTIONAL WATERS OF THE UNITED STATES (NOTE 2)		
	SURFACE WATER FLOW DIRECTION		
	SUBCATCHMENT BOUNDARY		
	FLOW PATH FOR T _C CALCULATION		
<u> </u>	LIMIT OF WORK		
2 5	SUBCATCHMENT DESIGNATION		
6R	REACH DESIGNATION		
<u>5</u> P	POND DESIGNATION		

NOTES:


- 1. TOPOGRAPHY DEVELOPED USING LIDAR TECHNOLOGY PERFORMED BY OPTIMAL GEOMATICS OF HUNTSVILLE, ALABAMA ON 17 DECEMBER 2005.
- LOCATIONS OF JURISDICTIONAL WETLANDS AND WATERS WERE OBTAINED FROM "FINAL WETLAND DETERMINATION, LANDFILLS AND FILL AREAS," BY SHAW ENVIRONMENTAL, INC. DATED 17 NOVEMBER 2003.

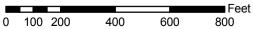



ATTACHMENT 4 -**POST-DEVELOPMENT** WATERSHED **DELINEATION MAP**

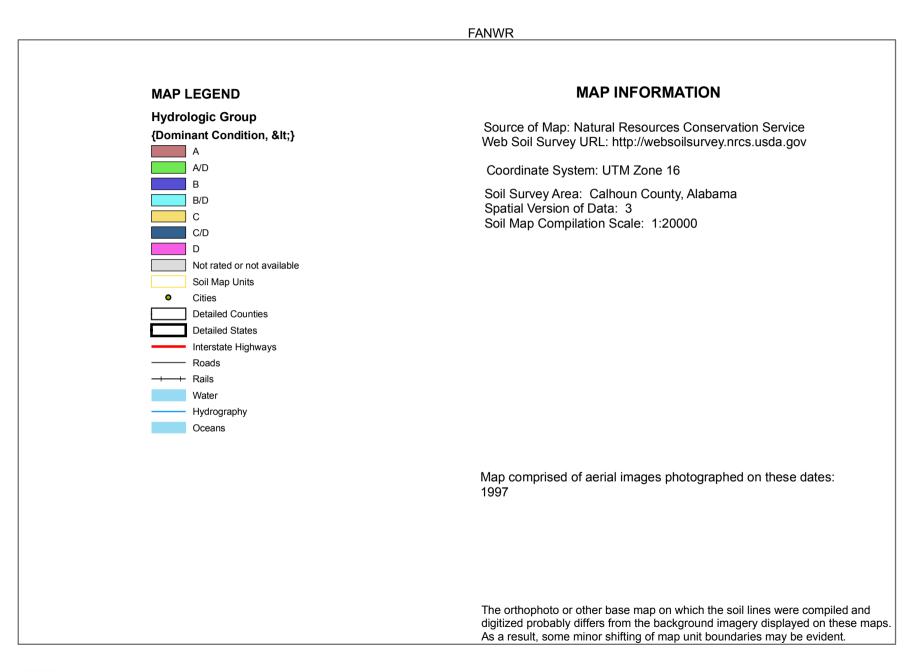

	ITEC CON KENNESAW, G	SULTANTS
DATE: SEPTEMBER 2006	SCALE:	1"=100'
PROJECT NO. GR3762	FILE NO.	3762SM04
DOCUMENT NO.	FIGURE NO.	4

Rainfall Distribution and Rainfall Depths

Hydrologic Soil Groups


HYDROLOGIC GROUP RATING FOR CALHOUN COUNTY, ALABAMA

FANWR



			Meters
0	45	90	180

USDA Natural Resources Conservation Service

HYDROLOGIC GROUP RATING FOR CALHOUN COUNTY, ALABAMA

Tables - Hydrologic Group

Soil Survey Area Map Unit Symbol	Map Unit Name	Rating	Total Acres in AOI	Percent of AOI
AsA	Atkins and Stendal soils, local alluvium, 0 to 2 percent slopes	D	3.3	12.4
CoB2	Cumberland gravelly loam, 2 to 6 percent slopes eroded	В	23.0	86.0
LhC2	Lehew-Montevallo soils, 2 to 10 percent slopes, eroded	D	0.0	0.0
PuA	Purdy silt loam, 0 to 2 percent slopes	D	0.0	0.1
SeB2	Sequatchie gravelly fine sandy loam, 2 to 6 percent slopes, eroded	В	0.0	0.2
Tr	Terrace escarpments	В	0.4	1.3

Summary by Map Unit - Calhoun County, Alabama

Description - Hydrologic Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are placed into four groups A, B, C, and D, and three dual classes, A/D, B/D, and C/D. Definitions of the classes are as follows:

The four hydrologic soil groups are:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

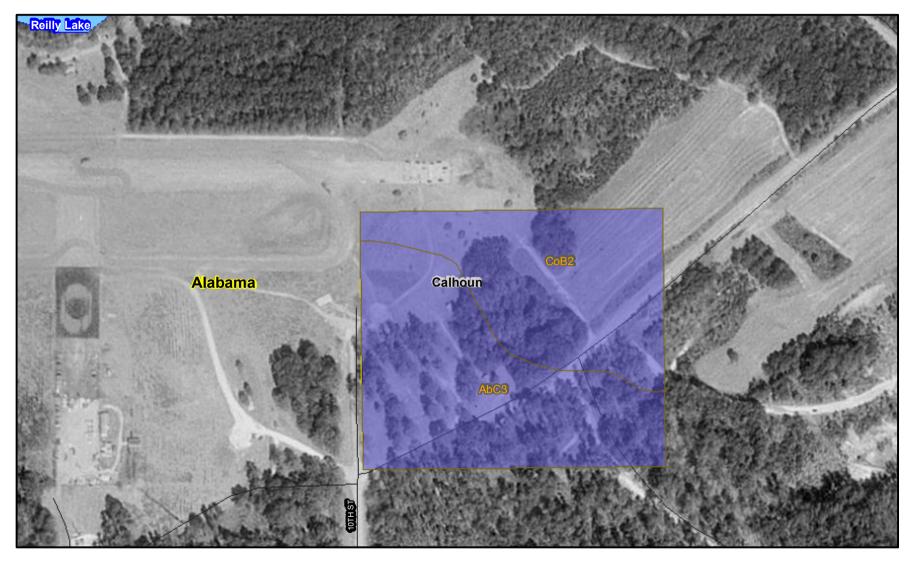
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only soils that are rated D in their natural condition are assigned to dual classes.

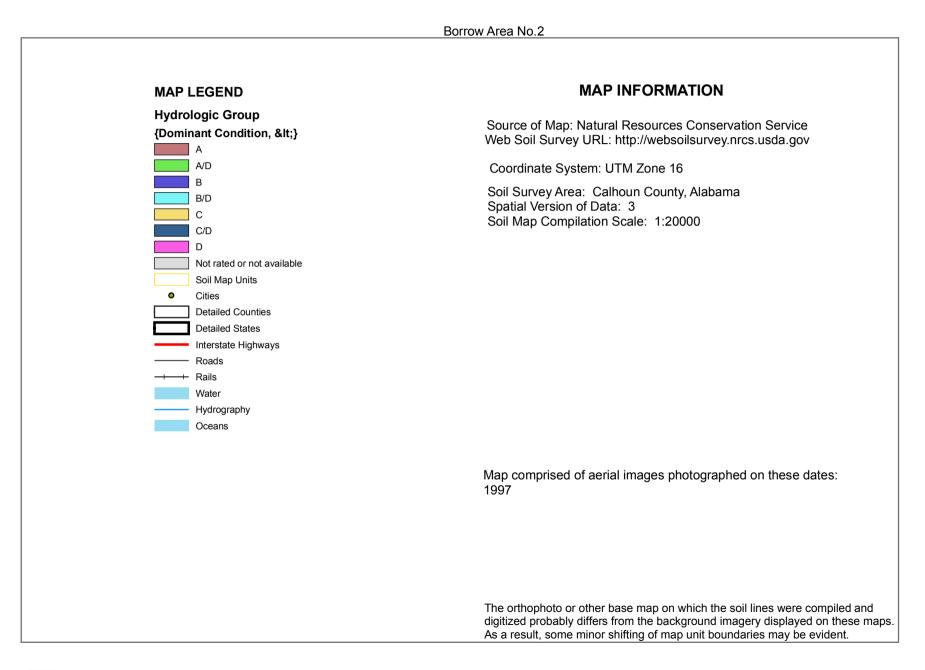
Parameter Summary - Hydrologic Group


Aggregation Method: Dominant Condition

Component Percent Cutoff:

Tie-break Rule: Lower

HYDROLOGIC GROUP RATING FOR CALHOUN COUNTY, ALABAMA


Borrow Area No.2

USDA Natural Resources Conservation Service

HYDROLOGIC GROUP RATING FOR CALHOUN COUNTY, ALABAMA

Tables - Hydrologic Group

Summary by Map Unit - Calhoun County, Alabama

Soil Survey Area Map Unit Symbol	Map Unit Name	Rating	Total Acres in AOI	Percent of AOI		
AbC3	Anniston gravelly clay loam 6 to 10 percent slopes, severely eroded	В	11.4	56.1		
CoB2	Cumberland gravelly loam, 2 to 6 percent slopes eroded	В	9.0	43.9		

Description - Hydrologic Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are placed into four groups A, B, C, and D, and three dual classes, A/D, B/D, and C/D. Definitions of the classes are as follows:

The four hydrologic soil groups are:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only soils that are rated D in their natural condition are assigned to dual classes.

Parameter Summary - Hydrologic Group

Aggregation Method: Dominant Condition

Component Percent Cutoff:

Tie-break Rule: Lower

TABLE A6-1

MAJOR TYPES OF SOILS FOR RUN-ON AREAS IN THE SOIL MAP

Soil Unit ⁽¹⁾	Soil Unit Description ⁽¹⁾	Location	Hydrologic Soil Group
CoB2	Cumberland Gravelly Loam	FANWR & Borrow Area No.2	В
AsA	Atkins and Stendal Soils, Local Alluvium	FANWR	D
AbC3	Anniston Gravelly Clay Loam	Borrow Area No.2	В

Notes:

(1) Map symbols, map soil unit names, and hydrologic soil groups for the soil survey area obtained from Natural Resources Conservation Service (NRCS) Web Soil Survey Site with the web address http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed on 22 September 2006).

Curve Numbers

Table 2-2aRunoff curve numbers for urban areas 1/2

Cover description			Curve nu hydrologic s		
	Average percent		ityurologic s	son group	
	Average percent		р	C	D
Cover type and hydrologic condition	mpervious area 2/	А	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) ^{3/} :					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:	•••••	00		• •	00
Paved parking lots, roofs, driveways, etc.			FINAL COVER		
(excluding right-of-way)		98	98	98	98
Streets and roads:	•••••	50		-	50
Paved; curbs and storm sewers (excluding			DETENTION PONE)	
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		98 83	98 89	98 92	90 93
		85 76	85		
Gravel (including right-of-way)		76 72	89 82	89 87	91 89
Dirt (including right-of-way)	•••••	12	82	87	89
Western desert urban areas:		60	77	05	00
Natural desert landscaping (pervious areas only) 4/	•••••	63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch		0.0	0.0	0.0	0.0
and basin borders)	•••••	96	96	96	96
Urban districts:	~ ~				~
Commercial and business		89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)		77	85	90	92
1/4 acre		61	75	83	87
1/3 acre		57	72	81	86
1/2 acre		54	70	80	85
1 acre		51	68	79	84
2 acres	12	46	65	77	82
Developing urban areas					
Newly graded areas					
(pervious areas only, no vegetation) ^{5/}		86	91	94	
Idle lands (CN's are determined using cover types					
similar to those in table 2-2c).					

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Table 2-2cRunoff curve numbers for other agricultural lands 1/

Cover description		Curve numbers for hydrologic soil group						
Cover type	Hydrologic condition	А	В	C	D			
Pasture, grassland, or range—continuous	Poor	68	79	86	89			
forage for grazing. 2/	Fair	49	69	79	84			
	Good	39	61	74	80			
Meadow—continuous grass, protected from grazing and generally mowed for hay.	—	30	58	71	78			
Brush—brush-weed-grass mixture with brush	Poor	48	67	77	83			
the major element. $\frac{3}{2}$	Fair	35	56	70	77			
-	Good	30 4/	48	65	73			
Woods—grass combination (orchard	Poor	57	73	82	86			
or tree farm). 5/	Fair	43	65	76	82			
	Good	32	58	72	79			
Woods. 6/	Poor	45	66	77	83			
	Fair	36	60	73	79			
	Good	30 4/	55	70	77			
Farmsteads—buildings, lanes, driveways, and surrounding lots.	_	59	e-development 74	r 82	86			

¹ Average runoff condition, and I_a , = 0.2S.

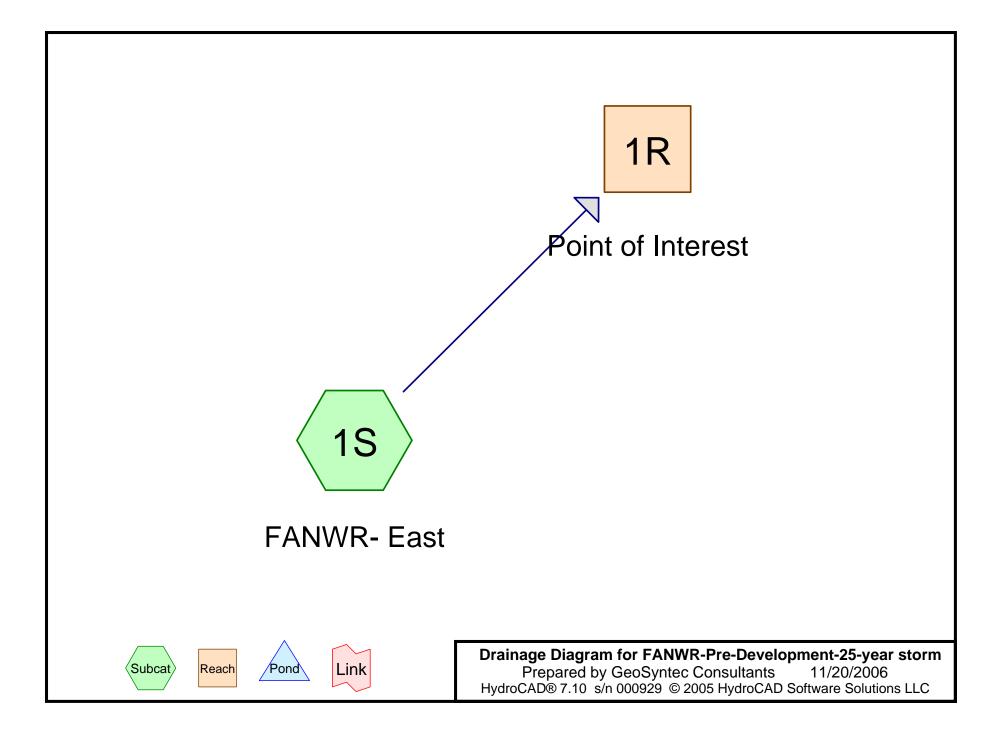
² *Poor:* <50%) ground cover or heavily grazed with no mulch.

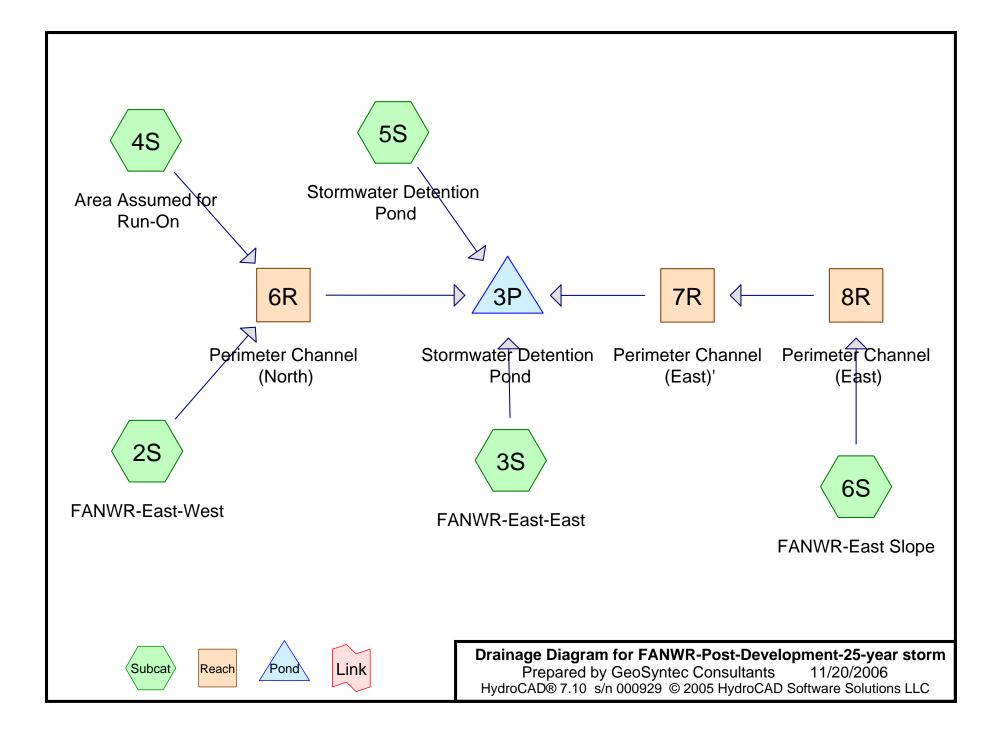
Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

³ *Poor*: <50% ground cover.

Fair: 50 to 75% ground cover.


Good: >75% ground cover.


⁴ Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

⁶ Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

HydroCADTM Nodal Network Diagrams

Properties of Subareas

LANDFILL COVER SYSTEM

FILL AREA NORTHWEST OF REILLY AIRFIELD

SURFACE WATER MANAGEMENT SYSTEM CALCULATIONS

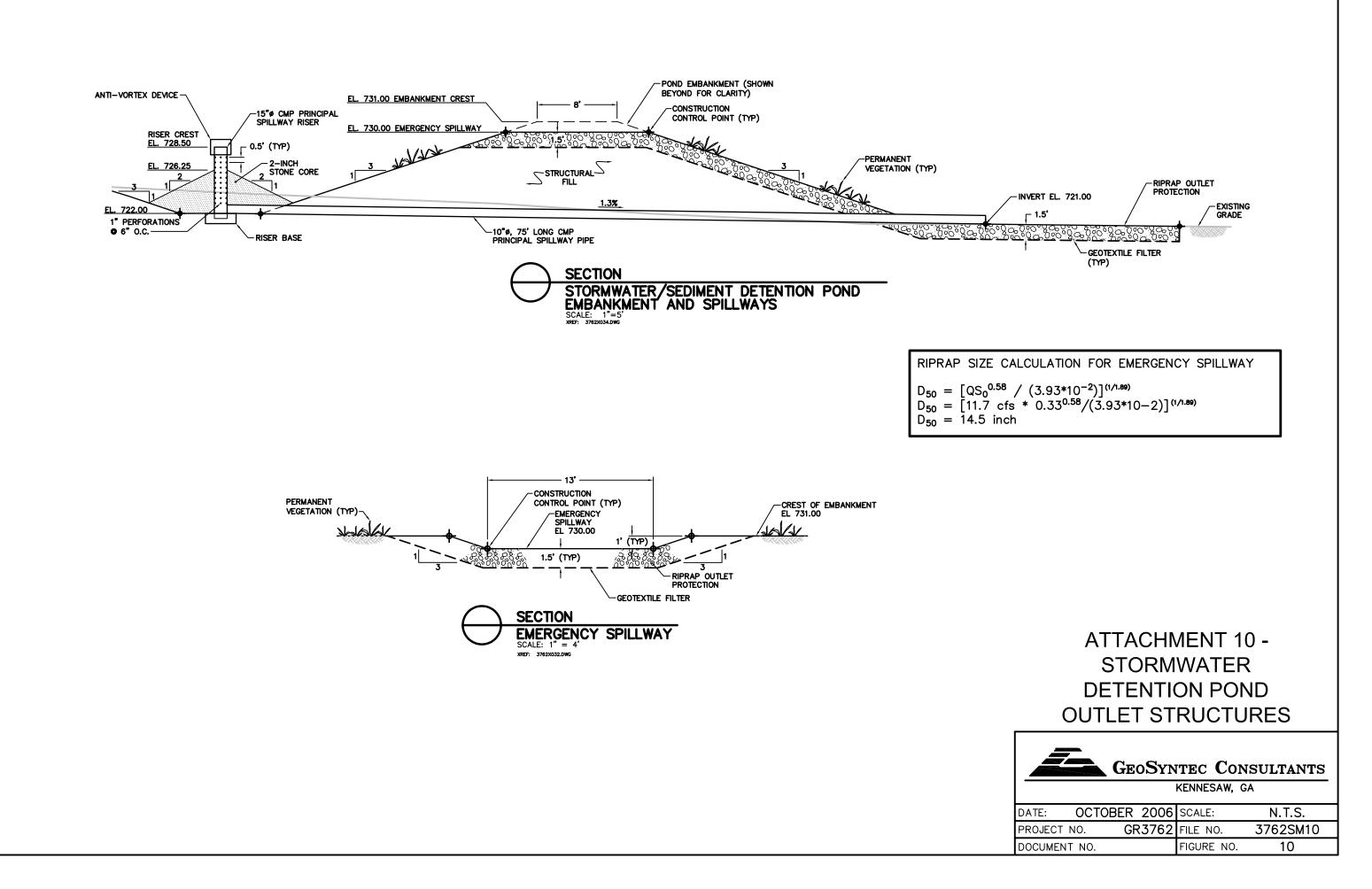
AREAS, AND TIMES OF CONCENTRATION (Tc) CALCULATIONS FOR PRE- AND POST-DEVELOPMENT CONDITIONS

	SUBAREA	AREA	CURVE				·		-	1 / 2-24									
	DESIGNATION	(acres)	NUMBER																
	in HydroCAD																		
No.	Description																		
					SHEET	FLOW 1			SHEET	FLOW 2			SHEET	FLOW 3		Travel T	imes (T _t) and T _c Ca	alculation	
				Length (ft)	Surface Desc.	Manning Coefficient, r	Slope (ft/ft)	Length (ft)	Surface Desc.	Manning Coefficient, n	Slope (ft/ft)	Length (ft)	Surface Desc.	Manning Coefficient, n	Slope (ft/ft)	iiuvei i	1_{c} Calculation		
	FANWR-East / Pre-			260	Woods: Dense underbrush	0.800	0.037	15	Woods: Dense underbrush	0.800	0.133	25	Woods: Dense underbrush	0.800	0.060	T _t (Sheet)	T _t (Shallow Conc.)	T _c	
1S	Development	4.94	55	SHAL	LOW CONCE	NTRATED F	LOW 1	SHA	LLOW CONCE	I INTRATED FI	LOW 2	SHA	LLOW CONCE	NTRATED FI	LOW 3	(min)	(min)	(min)	
	-			Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope (ft/ft)	Avg. Velocity	· /	<u> </u>	~ /	
				(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	67.5	7.7	75.2	
				200	Forrest w/Heavy litter	0.030	0.43									07.5	1.1	13.2	
					SHEET	FLOW 1				FLOW 2			SHEET	FLOW 3		Travel T	imes (T _t) and T _c Ca		
				Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Manning	Slope	11avei 1	$\Pi_{c} \subset C$	acculation	
				(ft)		Coefficient, r	n (ft/ft)	(ft)		Coefficient, n	(ft/ft)	(ft)		Coefficient, n	(ft/ft)				
28	FANWR-East-West / Post-	2.69	61	100	Grass: Short	0.150	0.050	200	Grass: Short	0.150	0.010					T _t (Sheet)	(Shallow Conc.)	T _c	
-0	Development				LOW CONCE	1			LLOW CONCE				LLOW CONCE			(min)	(min)	(min)	
				e	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	1 · · ·	Avg. Velocity	26.5			
				(ft)	Short Grass	(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)		4.4	30.9	
				185	Pasture	0.010	0.70												
					SHEET	FLOW 1			SHEET	FLOW 2			SHEET	FLOW 3		Tuoval T	imes (T_t) and T_c Ca	aloulation	
				Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Manning	Slope	11avel 1	lines (1_t) and 1_c Ca		
				(ft)		Coefficient, r	n (ft/ft)	(ft)		Coefficient, n	(ft/ft)	(ft)		Coefficient, n	(ft/ft)		1		
35	FANWR-East-East / Post-	3.06	61	50	Grass: Short	0.150	0.020	118	Grass: Short	0.150	0.050	132	Grass: Short	0.150	0.010	T _t (Sheet)	T _t (Shallow Conc.)	T _c	
55	Development		01		LOW CONCE	1		SHA	LLOW CONCE			SHA	LLOW CONCE	r		(min)	(min)	(min)	
				0	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.	-	Avg. Velocity				
				(ft)	Chart Carry	(ft/ft)	(ft/s)	(ft)	Chart Carry	(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	26.7	1.1	27.8	
				40	Short Grass Pasture	0.010	0.70	37	Short Grass Pasture	0.33	4.02								
					SHEET	FLOW 1			SHEET	FLOW 2			SHEET	FLOW 3		T1 T	imag (T) and T. C.	loulotic=	
				Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	Manning	Slope	1 ravel 1	imes (T _t) and T _c Ca	aculation	
				(ft)		Coefficient, r	n (ft/ft)	(ft)		Coefficient, n	(ft/ft)	(ft)		Coefficient, n	(ft/ft)				
				100	Woods: Dense	0.800	0.085									T _t	Tt	T _c	
4 S	Area Assumed for Run-On / Post-Development	0.23	55		underbrush			CIT A 1				CIT A				(Sheet)	(Shallow Conc.)	(
	/ Post-Development				LOW CONCE Surface Desc.	Slope	LOW 1 Avg. Velocity	SHALLOW CONCENTRATED FLOW 2 Length Surface Desc. Slope Avg. Velocity				SHALLOW CONCENTRATED FLOW 3 Length Surface Desc. Slope (ft/ft) Avg. Velocity				(min)	(min)	(min)	
				(ft)	Surrace Desc.	(ft/ft)	(ft/s)	Length (ft)	Surface Desc.	Slope (ft/ft)	Avg. Velocity (ft/s)	(ft)	Surrace Desc.	(ft/ft)	(ft/s)				
																19.0		19.0	

2-year, 24-hr Design Rainfall Depth, $P_{2-24} = 3.90$ inches

LANDFILL COVER SYSTEM

FILL AREA NORTHWEST OF REILLY AIRFIELD


SURFACE WATER MANAGEMENT SYSTEM CALCULATIONS

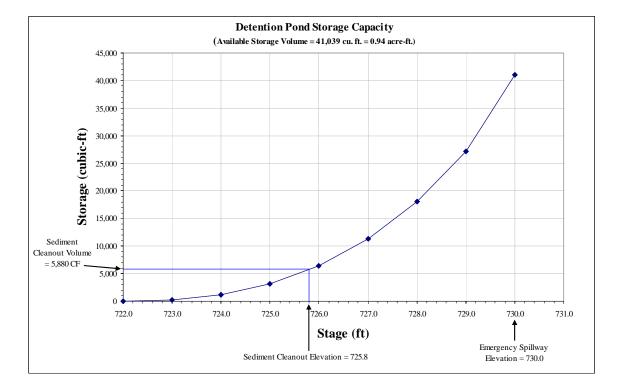
AREAS, AND TIMES OF CONCENTRATION (Tc) CALCULATIONS FOR PRE- AND POST-DEVELOPMENT CONDITIONS

	SUBAREA	AREA	CURVE																										
	DESIGNATION	(acres)	NUMBER																										
	in HydroCAD																												
No.	Description																												
					SHEET				SHEET	FLOW 2				FLOW 3	•	Travel T	imes (T _t) and T _c Ca	alculation											
				Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	U	Slope	Length	Surface Desc.	-	Slope	i i uver i													
				(ft)		Coefficient, n	(ft/ft)	(ft)		Coefficient, r	n (ft/ft)	(ft)		Coefficient, n	(ft/ft)														
																T _t	T _t	T _c											
5 S	Stormwater Detention Pond / Post-Development	0.31	98	SUAT	LOW CONCE	NTDATED FI		SUAT	LLOW CONCE	NTDATEDE		SUAT	LOW CONCE	NTDATED EI	OW 3	(Sheet) (min)	(Shallow Conc.) (min)	(min)											
	/ Tost Development			Length	Surface Desc.		Avg. Velocity	Length	Surface Desc.	1	Avg. Velocity	Length	1		Avg. Velocity	, , ,	(11111)	(IIIII)											
				(ft)	Surface Dese.	(ft/ft)	(ft/s)	(ft)	Surface Dese.	(ft/ft)	(ft/s)	(ft)	Surface Desc.	(ft/ft)	(ft/s)	5.0													
																(Direct Entry)		5.0											
			•	I												N	<u> </u>												
					SHEET	FLOW 1	_		SHEET	FLOW 2			SHEET	FLOW 3		Travel Times (T _t) and T _c Calculation													
		l			1				l	1					Length	Surface Desc.	Manning	Slope	Length	Surface Desc.	-	Slope	Length	Surface Desc.	Manning	Slope	iiavei i	Γ_{c} Γ_{t} and Γ_{c} Γ_{c}	
				(ft)		Coefficient, n	(ft/ft)	(ft)		Coefficient, r	n (ft/ft)	(ft)		Coefficient, n	(ft/ft)		1 1												
	FANWR (East Slope) /			131	Grass: Short	0.150	0.020	75	Grass: Short	0.150	0.050	50	Grass: Short	0.150	0.330	T _t (Sheet)	T _t (Shallow Conc.)	T _c											
6 S	Post-Development	0.44	61	SHALLOW CONCENTRATED FLOW 1			LOW 1	SHALLOW CONCENTRATED FLOW 2			LOW 2	SHALLOW CONCENTRATED FLOW 3				(min)	(min)	(min)											
		1		Length	Surface Desc.	Slope	Avg. Velocity	Length	Surface Desc.		Avg. Velocity	Length	Surface Desc.		Avg. Velocity		、 <i>,</i>	~ /											
				(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	(ft)		(ft/ft)	(ft/s)	17.6		17.6											
																17.0		17.0											

2-year, 24-hr Design Rainfall Depth, $P_{2-24} = 3.90$ inches

Stormwater Detention Pond Outlet Structures

ATTACHMENT 11


Stage-Storage Relationship

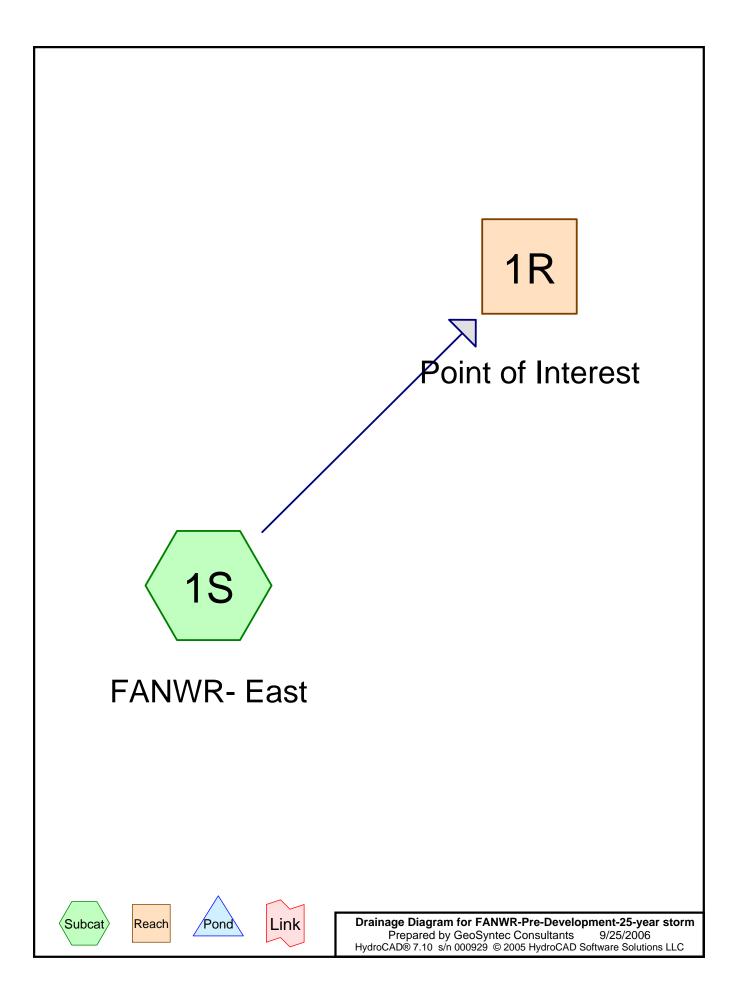
STAGE-STORAGE RELATIONSHIP

The stormwater detention pond is designed to hold 67 cubic yards per acre of drainage area (sediment storage volume) and the calculated runoff volume from a 25-year 24-hour design storm without the water elevation reaching the elevation of the emergency spillway. Available storage volume to the crest elevation of emergency spillway (730') is approximately 41,000 cubic-feet.

Required Sediment Storage Volume = 67 cubic yards / acre of disturbed area Total disturbed area flowing to stormwater detention pond= 6.5 acres

∴ Required Sediment Storage Volume = 435.5 cubic-yards = 11,760 cubic-ft

Based on the stage storage relationship shown above, for the stormwater detention pond:


Sediment Cleanout Volume = 0.5 * Required Sediment Storage Vol. $= 0.5 \times 11,760$ cubic-ft = 5,880 cubic-ft = 0.135 acre-ft.

Sediment Cleanout Elevation = 725.8 ft

ATTACHMENT 12

Computations Using HydroCADTM: Pre-Development

25 Year – 24 Hour Storm SCS Distribution (Pre-Development)

Time span=5.00-32.00 hrs, dt=0.05 hrs, 541 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: FANWR- East

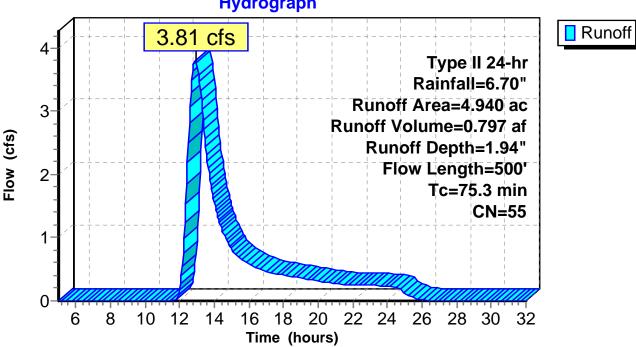
Runoff Area=4.940 ac Runoff Depth=1.94" Flow Length=500' Tc=75.3 min CN=55 Runoff=3.81 cfs 0.797 af

Reach 1R: Point of Interest

Inflow=3.81 cfs 0.797 af Outflow=3.81 cfs 0.797 af

Total Runoff Area = 4.940 ac Runoff Volume = 0.797 af Average Runoff Depth = 1.94"

HydroCAD® 7.10 s/n 000929 © 2005 HydroCAD Software Solutions LLC

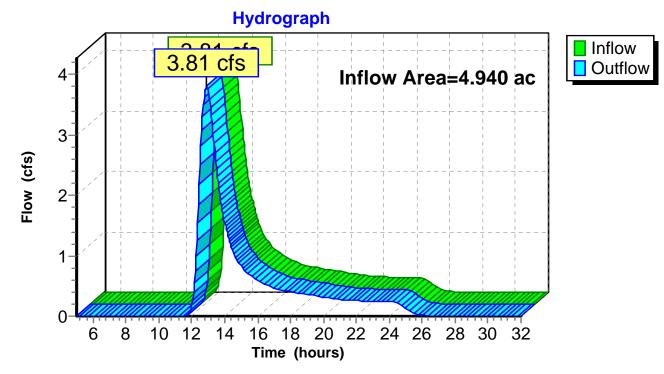

Subcatchment 1S: FANWR- East

Runoff 3.81 cfs @ 12.92 hrs, Volume= 0.797 af, Depth= 1.94" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-32.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=6.70"

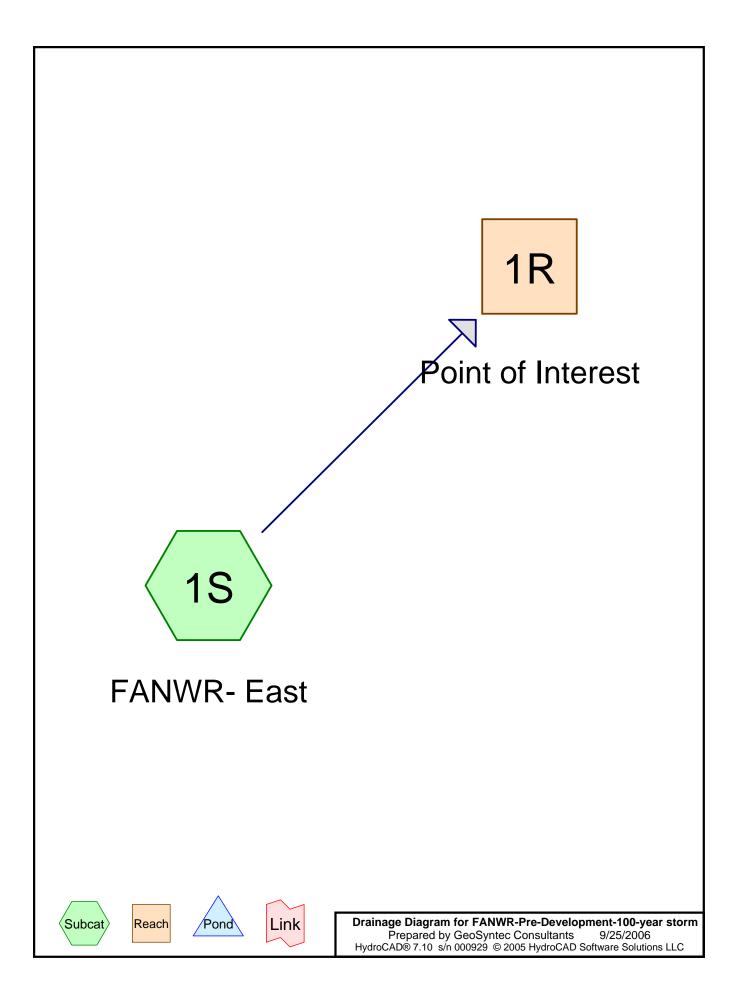
_	Area	(ac) C	N Des	cription		
	4.	940 5	55 Woo	ds in good	l condition	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	56.9	260	0.0370	0.1	· · · · ·	Sheet Flow, FANWR
						Woods: Dense underbrush n= 0.800 P2= 3.90"
	3.5	15	0.1330	0.1		Sheet Flow, FANWR
						Woods: Dense underbrush n= 0.800 P2= 3.90"
	7.2	25	0.0600	0.1		Sheet Flow,
				~ (Woods: Dense underbrush n= 0.800 P2= 3.90"
	7.7	200	0.0300	0.4		Shallow Concentrated Flow, FANWR
_						Forest w/Heavy Litter Kv= 2.5 fps
	75.3	500	Total			

Subcatchment 1S: FANWR- East


Hydrograph

Reach 1R: Point of Interest

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area	a =	4.940 ac, Inflow Depth = 1.94"	
Inflow	=	3.81 cfs @ 12.92 hrs, Volume=	0.797 af
Outflow	=	3.81 cfs @ 12.92 hrs, Volume=	0.797 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-32.00 hrs, dt= 0.05 hrs

Reach 1R: Point of Interest

100 Year – 24 Hour Storm SCS Distribution (Pre-Development)

Time span=5.00-32.00 hrs, dt=0.05 hrs, 541 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

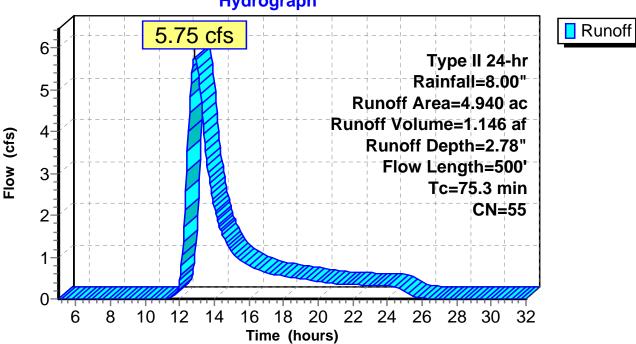
Subcatchment 1S: FANWR- East

Runoff Area=4.940 ac Runoff Depth=2.78" Flow Length=500' Tc=75.3 min CN=55 Runoff=5.75 cfs 1.146 af

Reach 1R: Point of Interest

Inflow=5.75 cfs 1.146 af Outflow=5.75 cfs 1.146 af

Total Runoff Area = 4.940 ac Runoff Volume = 1.146 af Average Runoff Depth = 2.78"

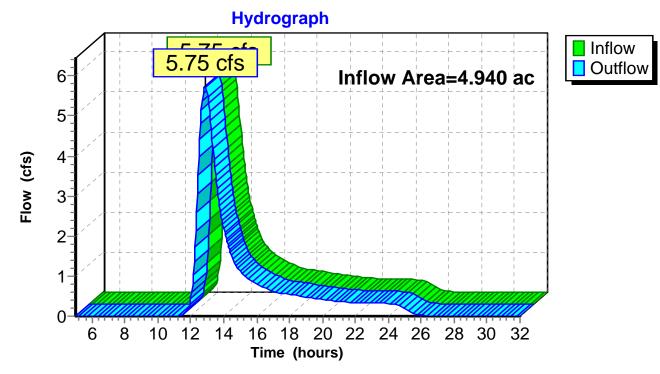

Subcatchment 1S: FANWR- East

Runoff = 5.75 cfs @ 12.88 hrs, Volume= 1.146 af, Depth= 2.78"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-32.00 hrs, dt= 0.05 hrs Type II 24-hr Rainfall=8.00"

	Area	(ac) C	N Dese	cription		
	4.	940 5	55 Woo	ds in good	l condition	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	56.9	260	0.0370	0.1		Sheet Flow, FANWR
						Woods: Dense underbrush n= 0.800 P2= 3.90"
	3.5	15	0.1330	0.1		Sheet Flow, FANWR
						Woods: Dense underbrush n= 0.800 P2= 3.90"
	7.2	25	0.0600	0.1		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.90"
	7.7	200	0.0300	0.4		Shallow Concentrated Flow, FANWR
_						Forest w/Heavy Litter Kv= 2.5 fps
	75.3	500	Total			

Subcatchment 1S: FANWR- East

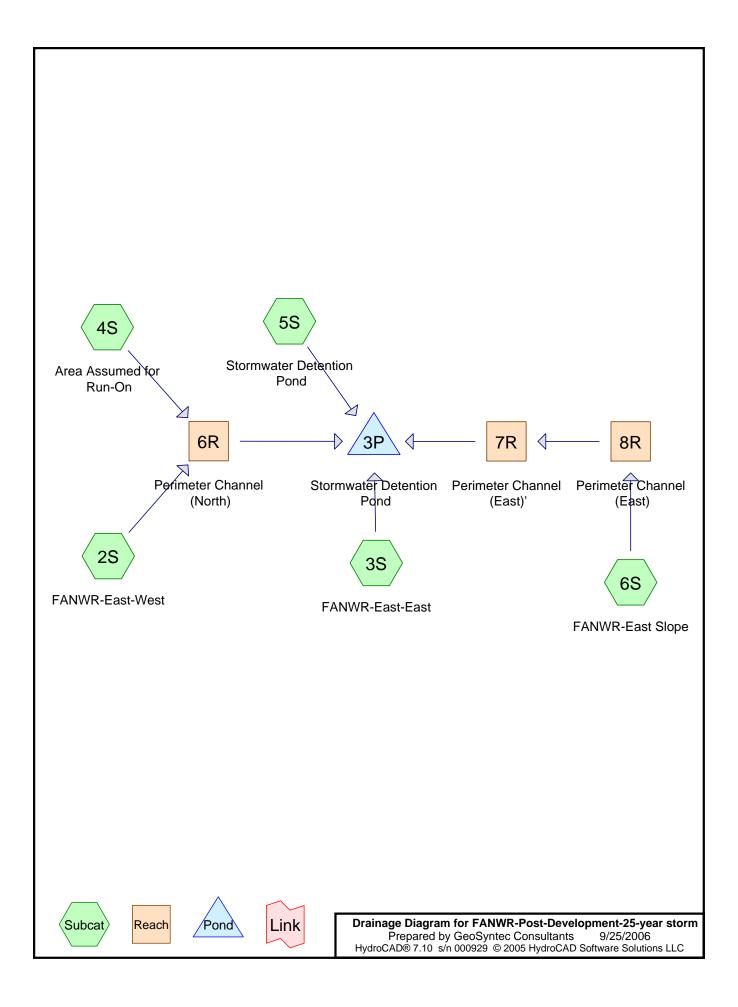

Hydrograph

Reach 1R: Point of Interest

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	4.940 ac, Inflow Depth = 2.78"	
Inflow =	5.75 cfs @ 12.88 hrs, Volume=	1.146 af
Outflow =	5.75 cfs @ 12.88 hrs, Volume=	1.146 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-32.00 hrs, dt= 0.05 hrs



Reach 1R: Point of Interest

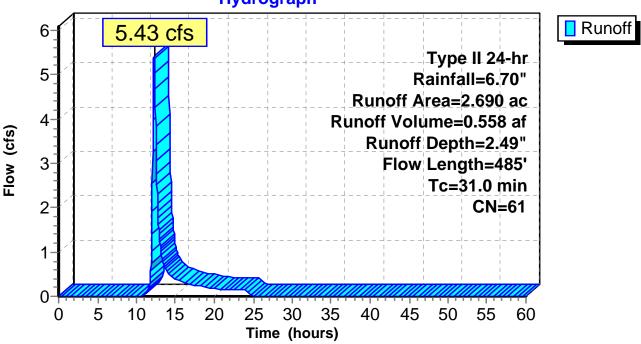
ATTACHMENT 13

Computations Using HydroCADTM: Post-Development

25 Year – 24 Hour Storm SCS Distribution (Post-Development)

FANWR-Post-Development-25-year storm Prepared by GeoSyntec Consultants HydroCAD® 7.10 s/n 000929 © 2005 HydroCAD Software Solutions LLC	Type II 24-hr Rainfall=6.70" Page 2 9/25/2006							
Time span=0.00-60.00 hrs, dt=0.04 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method . Pond routing by Stor-Ind method								
	rea=2.690 ac Runoff Depth=2.49" CN=61 Runoff=5.43 cfs 0.558 af							
	rea=3.060 ac Runoff Depth=2.49" CN=61 Runoff=6.63 cfs 0.634 af							
	rea=0.230 ac Runoff Depth=1.94" CN=55 Runoff=0.47 cfs 0.037 af							
	rea=0.310 ac Runoff Depth=6.46" CN=98 Runoff=3.03 cfs 0.167 af							
	rea=0.440 ac Runoff Depth=2.49" CN=61 Runoff=1.27 cfs 0.091 af							
Reach 6R: Perimeter Channel (North)Peak Depth=0.67'Max Ven=0.030L=260.0'S=0.0346 '/'Capacity=16'	l=4.3 fps Inflow=5.77 cfs 0.595 af 5.82 cfs Outflow=5.73 cfs 0.595 af							
Reach 7R: Perimeter Channel (East)'Peak Depth=0.29'Max Ven=0.030L=63.0'S=0.1429 '/'Capacity=34	l=5.0 fps Inflow=1.24 cfs 0.091 af .16 cfs Outflow=1.24 cfs 0.091 af							
Reach 8R: Perimeter Channel (East)Peak Depth=0.42'Max Ven=0.030L=223.0'S=0.0202 '/'Capacity=12	l=2.4 fps Inflow=1.27 cfs 0.091 af 2.84 cfs Outflow=1.24 cfs 0.091 af							
Pond 3P: Stormwater Detention PondPeak Elev=728.84'Storage=28Primary=3.33 cfs1.473 afSecondary=0.00 cfs0	5,530 cf Inflow=13.61 cfs 1.487 af .000 af Outflow=3.33 cfs 1.473 af							

Total Runoff Area = 6.730 ac Runoff Volume = 1.487 af Average Runoff Depth = 2.65"


Subcatchment 2S: FANWR-East-West

Runoff = 5.43 cfs @ 12.27 hrs, Volume= 0.558 af, Depth= 2.49"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Type II 24-hr Rainfall=6.70"

/	Area	(ac) C	N Desc	cription		
	2.	690 6	51			
(r	Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.2	100	0.0500	0.3		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
2	20.4	200	0.0100	0.2		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
	4.4	185	0.0100	0.7		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
3	31.0	485	Total			

Subcatchment 2S: FANWR-East-West

Hydrograph

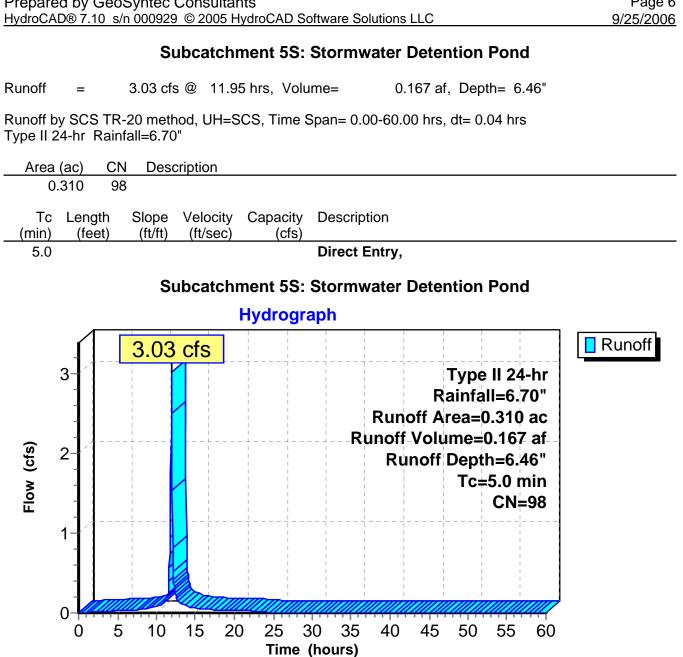

Subcatchment 3S: FANWR-East-East

Runoff 6.63 cfs @ 12.23 hrs, Volume= 0.634 af, Depth= 2.49" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Type II 24-hr Rainfall=6.70"

Area	(ac) C	N Desc	cription		
3.	060 6	61			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.1	50	0.0200	0.2		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.90"
7.0	118	0.0500	0.3		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.90"
14.6	132	0.0100	0.2		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.90"
1.0	40	0.0100	0.7		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.2	37	0.3300	4.0		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
27.9	377	Total			

Subcatchment 3S: FANWR-East-East

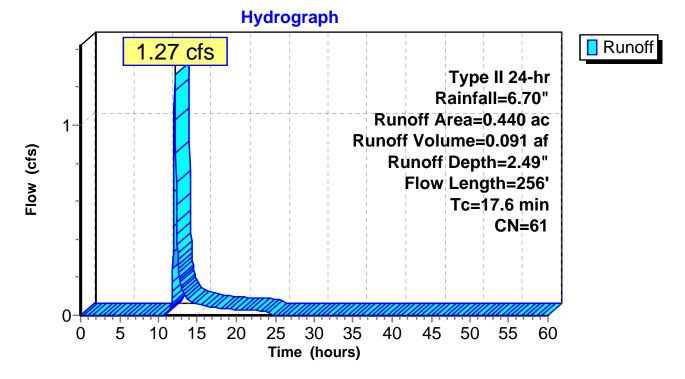

Hydrograph

Subcatchment 4S: Area Assumed for Run-On

Runoff = 0.47 cfs @ 12.13 hrs, Volume= 0.037 af, Depth= 1.94"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Type II 24-hr Rainfall=6.70"

Area	<u> </u>		ription									
0.	230 5	55										
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descript	ion						
19.0	100	0.0850	0.1	(013)	Sheet F							
					Woods:	Dense	e unde	erbrush	n n= C).800	P2= 3.90"	
Subcatchment 4S: Area Assumed for Run-On												
				Hydrogr	aph							
	<u>, 1</u>	- 0.4	7 cfs								Runoff	
).5- 45-							Туре	-11-24	-hr		
	45].4-]	 	1						ll=6.7		1	
	35-							I I	0.230			
).3-).3-								0.037 h=1.9		-	
U	25-	L							ith=1			
	23 -).2 - 1							_	9.0 n			
	15								-CN=	:55		
	D.1	L					ا لــــــــــــــــــــــــــــــــــــ	 				
	05	 										
0.											ļ	
	0	5 10	15 2		30 35	40	45	50	55	60		
	Time (hours)											


Subcatchment 6S: FANWR-East Slope

Runoff = 1.27 cfs @ 12.11 hrs, Volume= 0.091 af, Depth= 2.49"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Type II 24-hr Rainfall=6.70"

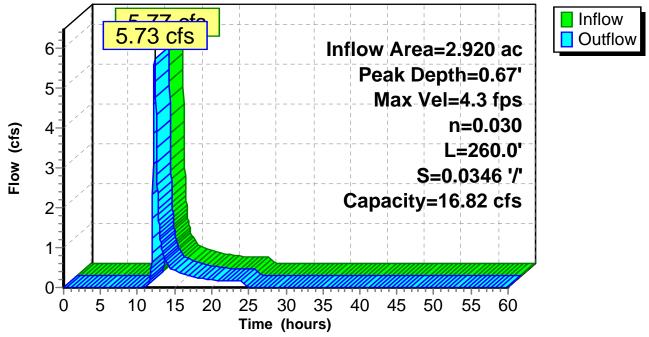
Area	(ac) C	N Desc	cription		
0	.440 6	61			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.0	131	0.0200	0.2		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.90"
4.9	75	0.0500	0.3		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.90"
1.7	50	0.3300	0.5		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.90"
17.6	256	Total			

Subcatchment 6S: FANWR-East Slope

Reach 6R: Perimeter Channel (North)

 Inflow Area =
 2.920 ac, Inflow Depth =
 2.44"

 Inflow =
 5.77 cfs @
 12.26 hrs, Volume=
 0.595 af

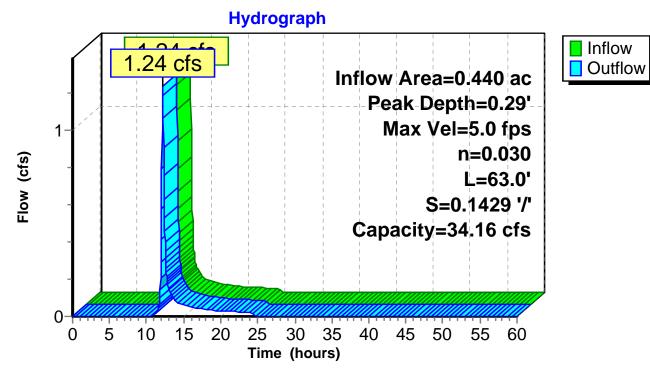

 Outflow =
 5.73 cfs @
 12.29 hrs, Volume=
 0.595 af, Atten= 1%, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Max. Velocity= 4.3 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.9 fps, Avg. Travel Time= 2.3 min

Peak Depth= 0.67' @ 12.27 hrs Capacity at bank full= 16.82 cfs Inlet Invert= 741.00', Outlet Invert= 732.00' $0.00' \times 1.00'$ deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0'/' Top Width= 6.00'Length= 260.0' Slope= 0.0346'/'

Reach 6R: Perimeter Channel (North)

Reach 7R: Perimeter Channel (East)'


[61] Hint: Submerged 6% of Reach 8R bottom

Inflow Area =	0.440 ac, Inflow Depth = 2.49"	
Inflow =	1.24 cfs @ 12.16 hrs, Volume=	0.091 af
Outflow =	1.24 cfs @ 12.16 hrs, Volume=	0.091 af, Atten= 0%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Max. Velocity= 5.0 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.1 fps, Avg. Travel Time= 0.5 min

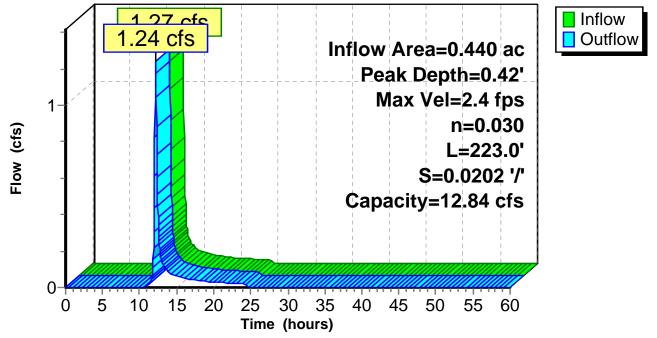
Peak Depth= 0.29' @ 12.16 hrs Capacity at bank full= 34.16 cfs Inlet Invert= 739.50', Outlet Invert= 730.50' $0.00' \times 1.00'$ deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0'/' Top Width= 6.00'Length= 63.0' Slope= 0.1429'/'

Reach 7R: Perimeter Channel (East)'

Reach 8R: Perimeter Channel (East)

 Inflow Area =
 0.440 ac, Inflow Depth =
 2.49"

 Inflow =
 1.27 cfs @
 12.11 hrs, Volume=
 0.091 af

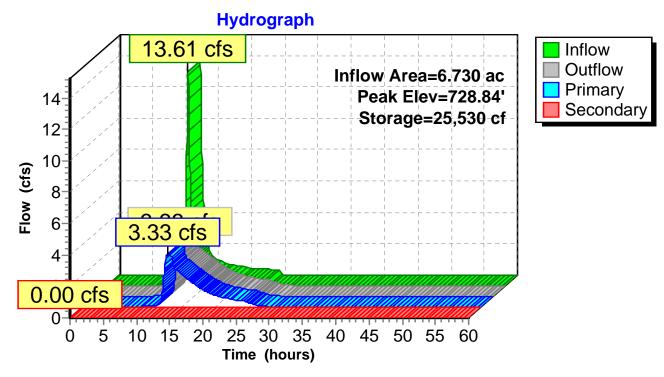

 Outflow =
 1.24 cfs @
 12.16 hrs, Volume=
 0.091 af, Atten= 2%, Lag= 2.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Max. Velocity= 2.4 fps, Min. Travel Time= 1.6 min Avg. Velocity = 1.0 fps, Avg. Travel Time= 3.7 min

Peak Depth= 0.42' @ 12.13 hrs Capacity at bank full= 12.84 cfs Inlet Invert= 744.00', Outlet Invert= 739.50' $0.00' \times 1.00'$ deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0'/' Top Width= 6.00'Length= 223.0' Slope= 0.0202'/'

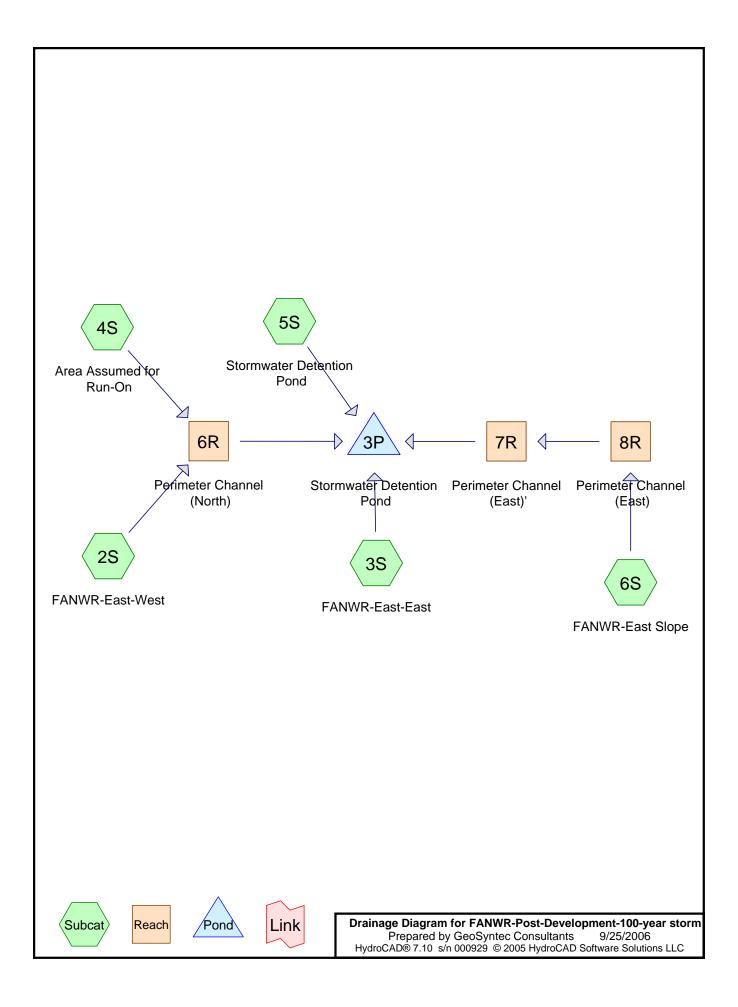
Reach 8R: Perimeter Channel (East)

Pond 3P: Stormwater Detention Pond


Inflow Area =	6.730 ac, Inflow Depth = 2.65"	
Inflow =	13.61 cfs @ 12.24 hrs, Volume=	1.487 af
Outflow =	3.33 cfs @ 12.91 hrs, Volume=	1.473 af, Atten= 75%, Lag= 39.9 min
Primary =	3.33 cfs @ 12.91 hrs, Volume=	1.473 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Peak Elev= 728.84' @ 12.91 hrs Surf.Area= 9,825 sf Storage= 25,530 cf Plug-Flow detention time= 129.0 min calculated for 1.472 af (99% of inflow) Center-of-Mass det. time= 123.4 min (981.2 - 857.8)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	722.00'	5	3,188 cf	Custo	m Stage Data (Pr	ismatic)Listed below (Recalc)
Flouratio			ا ما	Ctore	Curra Chara	
Elevatio		urf.Area		Store	Cum.Store	
(fee		(sq-ft)	(CUDI	c-feet)	(cubic-feet)	
722.0		0		0	0	
722.5		238		60	60	
723.0		552		198	257	
723.5		941		373	630	
724.0		1,406		587	1,217	
724.5		1,947		838	2,055	
725.0		2,564		1,128	3,183	
725.5		3,256		1,455	4,638	
726.0		4,024		1,820	6,458	
726.5		4,868		2,223	8,681	
727.0		5,788		2,664	11,345	
727.5		6,783		3,143	14,488	
728.0		7,855		3,660	18,147	
728.5		9,002		4,214	22,362	
729.0		10,224		4,807	27,168	
729.5		11,523		5,437	32,605	
730.0		13,213		6,184	38,789	
731.0	00	15,586	1	4,400	53,188	
Device	Routing	Invert	Outlet [Jovicos		
#1	Primary	722.00'				P, mitered to conform to fill, $Ke= 0.700$
					21.00' S= 0.0143	3 / CC = 0.900
	Davis 1				gated metal	
#2	Device 1	728.50				ited to weir flow $C=0.600$
#3	Device 1	723.50'	1.0 Ve C= 0.60		ce/Grate X 6.00 c	olumns X 10 rows with 6.0" cc spacing
#4	Secondary	730.00'			0' breadth Broad	-Crested Rectangular Weir
	Cocondary	100100				0 1.00 1.20 1.40 1.60 1.80 2.00
					4.00 4.50 5.00	
						2.69 2.68 2.68 2.66 2.64 2.64 2.64
					2.66 2.68 2.70	


Primary OutFlow Max=3.33 cfs @ 12.91 hrs HW=728.84' (Free Discharge) 1=Culvert (Barrel Controls 3.33 cfs @ 6.1 fps) 2=Orifice/Grate (Passes < 2.50 cfs potential flow) 3=Orifice/Grate (Passes < 2.66 cfs potential flow)

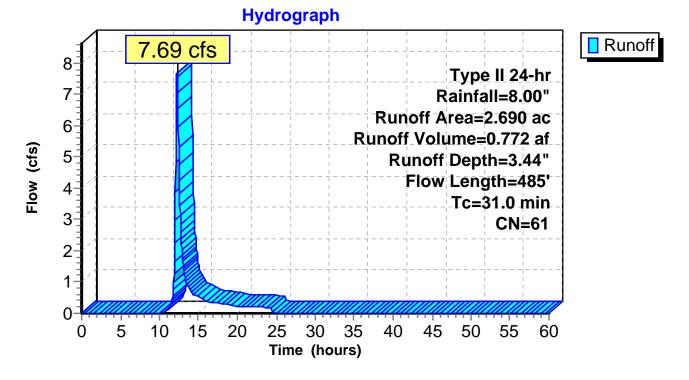
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=722.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: Stormwater Detention Pond

100 Year – 24 Hour Storm SCS Distribution (Post-Development)

FANWR-Post-Development-100-year storm Prepared by GeoSyntec Consultants HydroCAD® 7.10 s/n 000929 © 2005 HydroCAD Software Solution	Type II 24-hr Rainfall=8.00" Page 2 ns LLC 9/25/2006								
Time span=0.00-60.00 hrs, dt=0.04 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method									
Subcatchment 2S: FANWR-East-West Flow Length=485' 1	Runoff Area=2.690 ac Runoff Depth=3.44" Fc=31.0 min CN=61 Runoff=7.69 cfs 0.772 af								
Subcatchment 3S: FANWR-East-East	Runoff Area=3.060 ac Runoff Depth=3.44" Cc=27.9 min CN=61 Runoff=9.38 cfs 0.878 af								
Subcatchment 4S: Area Assumed for Run-On Flow Length=100' T	Runoff Area=0.230 ac Runoff Depth=2.78" Fc=19.0 min CN=55 Runoff=0.70 cfs 0.053 af								
Subcatchment 5S: Stormwater Detention Pond	Runoff Area=0.310 ac Runoff Depth=7.76" Tc=5.0 min CN=98 Runoff=3.62 cfs 0.200 af								
Subcatchment 6S: FANWR-East Slope Flow Length=256' T	Runoff Area=0.440 ac Runoff Depth=3.44" Fc=17.6 min CN=61 Runoff=1.78 cfs 0.126 af								
	.76' Max Vel=4.7 fps Inflow=8.19 cfs 0.826 af Capacity=16.82 cfs Outflow=8.15 cfs 0.826 af								
	.33' Max Vel=5.4 fps Inflow=1.75 cfs 0.126 af Capacity=34.16 cfs Outflow=1.74 cfs 0.126 af								
	.48' Max Vel=2.6 fps Inflow=1.78 cfs 0.126 af Capacity=12.84 cfs Outflow=1.75 cfs 0.126 af								
	' Storage=37,708 cf Inflow=19.23 cfs 2.031 af y=0.00 cfs 0.000 af Outflow=3.58 cfs 2.016 af								

Total Runoff Area = 6.730 ac Runoff Volume = 2.031 af Average Runoff Depth = 3.62"

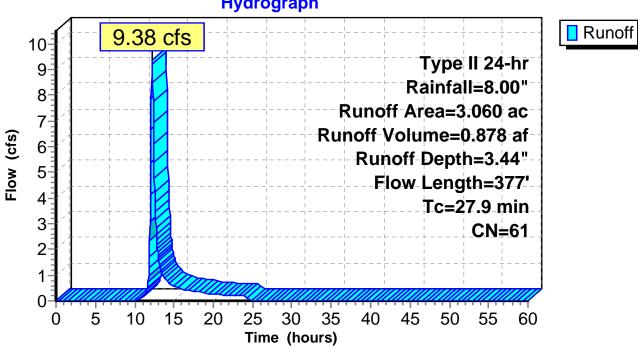

Subcatchment 2S: FANWR-East-West

Runoff = 7.69 cfs @ 12.26 hrs, Volume= 0.772 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Type II 24-hr Rainfall=8.00"

	Area	(ac) C	N Desc	cription		
	2.	690 6	61			
(r	Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.2	100	0.0500	0.3		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
2	20.4	200	0.0100	0.2		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
	4.4	185	0.0100	0.7		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
3	31.0	485	Total			

Subcatchment 2S: FANWR-East-West

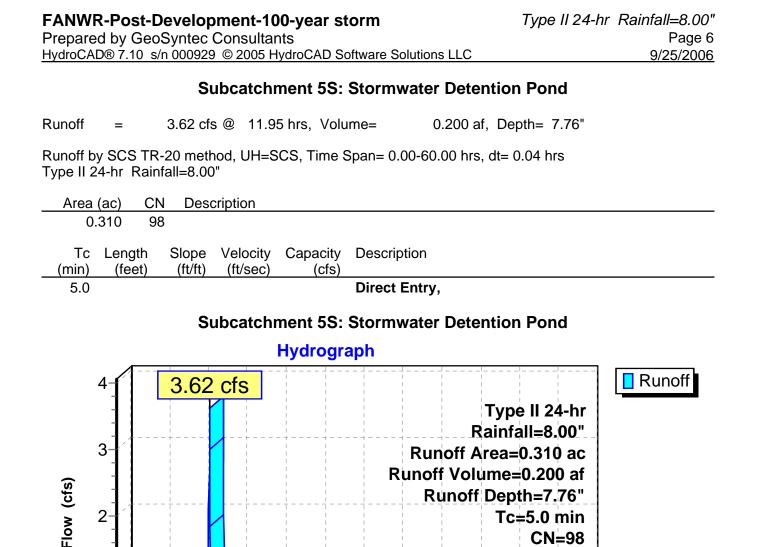

Subcatchment 3S: FANWR-East-East

Runoff 9.38 cfs @ 12.23 hrs, Volume= 0.878 af, Depth= 3.44" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Type II 24-hr Rainfall=8.00"

Ar	ea (a	ic) C	N Desc	ription		
	3.06	60 6	1			
- (mi		_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5	5.1	50	0.0200	0.2		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
7	' .0	118	0.0500	0.3		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
14	.6	132	0.0100	0.2		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
1	.0	40	0.0100	0.7		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0).2	37	0.3300	4.0		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
27	'.9	377	Total			

Subcatchment 3S: FANWR-East-East


Hydrograph

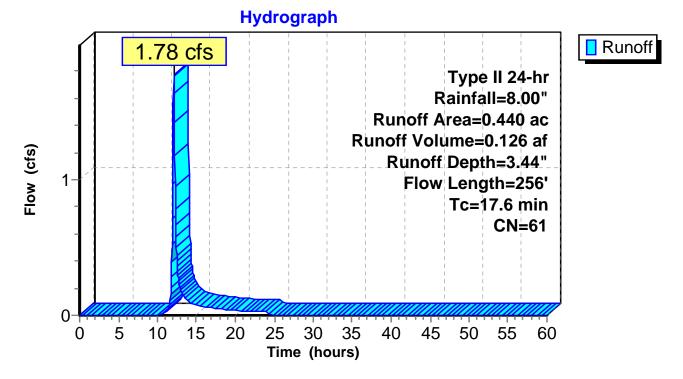
Subcatchment 4S: Area Assumed for Run-On

Runoff = 0.70 cfs @ 12.13 hrs, Volume= 0.053 af, Depth= 2.78"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Type II 24-hr Rainfall=8.00"

Area	. /		cription								
0).230 5	55									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descrip	tion					
19.0	100	0.0850	0.1		Sheet F Woods:		e unde	rbrush	n n= (0.800	P2= 3.90"
		S	ubcatch	ment 4S:	Area A	ssum	ned fo	or Ru	n-On		
				Hydrogra	aph						
		0.7	0 cfs				 	 			Runoff
	0.7								e II 24		
	0.6				· !	Run			ll=8.().230		
(s)	0.5				R	unoff		1	1		
Flow (cfs)	0.4					1 1	1	- 1	h=2.7 th=1		
Flov	0.3						 	_	9.0 n	nin	
	0.2						 		CN=	:55	
	0.1				 [
			J								
	0	5 10	15 2		30 35	40	45	50	55	60	
				Time	(hours)						

Time (hours)

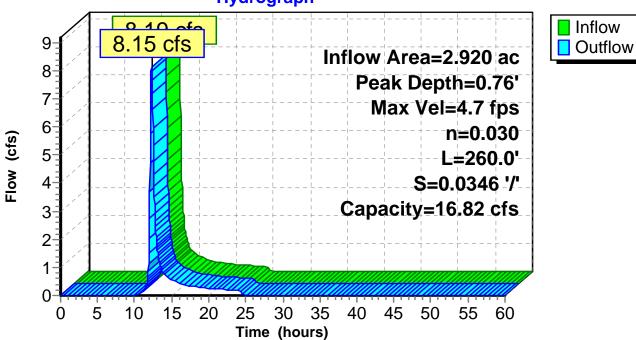

Subcatchment 6S: FANWR-East Slope

Runoff = 1.78 cfs @ 12.11 hrs, Volume= 0.126 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Type II 24-hr Rainfall=8.00"

A	rea	(ac) C	N Desc	cription		
	0.	440 6	51			
	Tc in)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11	1.0	131	0.0200	0.2		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
2	4.9	75	0.0500	0.3		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
-	1.7	50	0.3300	0.5		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
17	7.6	256	Total			

Subcatchment 6S: FANWR-East Slope


Reach 6R: Perimeter Channel (North)

Inflow Area	a =	2.920 ac, I	nflow Depth	i = 3.39"		
Inflow	=	8.19 cfs @	12.25 hrs,	Volume=	0.826 af	
Outflow	=	8.15 cfs @	12.28 hrs,	Volume=	0.826 af,	Atten= 1%, Lag= 1.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Max. Velocity= 4.7 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.0 fps, Avg. Travel Time= 2.2 min

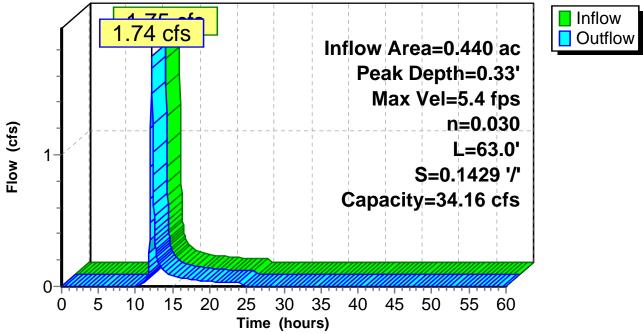
Peak Depth= 0.76' @ 12.26 hrs Capacity at bank full= 16.82 cfs Inlet Invert= 741.00', Outlet Invert= 732.00' $0.00' \times 1.00'$ deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0'/' Top Width= 6.00'Length= 260.0' Slope= 0.0346'/'

Reach 6R: Perimeter Channel (North)

Hydrograph

Reach 7R: Perimeter Channel (East)'

[61] Hint: Submerged 7% of Reach 8R bottom


Inflow Area	I =	0.440 ac, Inflow Depth = 3.44"	
Inflow	=	1.75 cfs @ 12.15 hrs, Volume=	0.126 af
Outflow	=	1.74 cfs @ 12.16 hrs, Volume=	0.126 af, Atten= 0%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Max. Velocity= 5.4 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.2 fps, Avg. Travel Time= 0.5 min

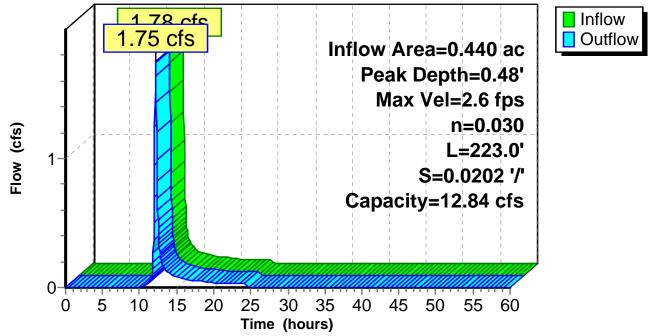
Peak Depth= 0.33' @ 12.15 hrs Capacity at bank full= 34.16 cfs Inlet Invert= 739.50', Outlet Invert= 730.50' $0.00' \times 1.00'$ deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0'/' Top Width= 6.00'Length= 63.0' Slope= 0.1429'/'

Reach 7R: Perimeter Channel (East)'

Reach 8R: Perimeter Channel (East)

 Inflow Area =
 0.440 ac, Inflow Depth =
 3.44"

 Inflow =
 1.78 cfs @
 12.11 hrs, Volume=
 0.126 af

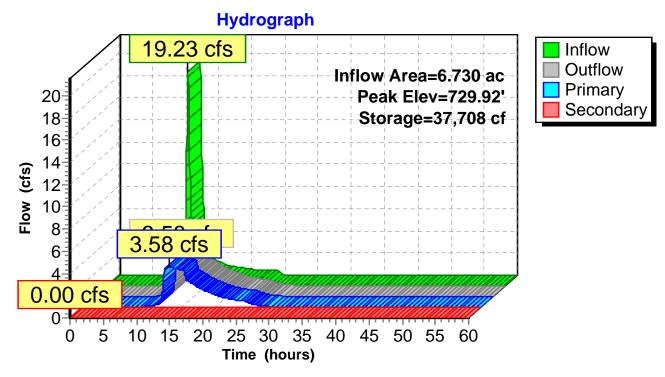

 Outflow =
 1.75 cfs @
 12.15 hrs, Volume=
 0.126 af, Atten= 2%, Lag= 2.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Max. Velocity= 2.6 fps, Min. Travel Time= 1.4 min Avg. Velocity = 1.0 fps, Avg. Travel Time= 3.5 min

Peak Depth= 0.48' @ 12.12 hrs Capacity at bank full= 12.84 cfs Inlet Invert= 744.00', Outlet Invert= 739.50' $0.00' \times 1.00'$ deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0'/' Top Width= 6.00'Length= 223.0' Slope= 0.0202'/'

Reach 8R: Perimeter Channel (East)

Pond 3P: Stormwater Detention Pond


Inflow Area =	6.730 ac, Inflow Depth = 3.62"	
Inflow =	19.23 cfs @ 12.24 hrs, Volume=	2.031 af
Outflow =	3.58 cfs @ 13.05 hrs, Volume=	2.016 af, Atten= 81%, Lag= 48.9 min
Primary =	3.58 cfs @ 13.05 hrs, Volume=	2.016 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.04 hrs Peak Elev= 729.92' @ 13.05 hrs Surf.Area= 12,933 sf Storage= 37,708 cf Plug-Flow detention time= 141.0 min calculated for 2.016 af (99% of inflow) Center-of-Mass det. time= 136.2 min (986.8 - 850.5)

Volume	Invert	Avail.	Storage	Storag	e Description	
#1	722.00'	53	3,188 cf	Custo	m Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on S	urf.Area	Inc	Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
722.0	00	0	•	0	0	
722.5	50	238		60	60	
723.0	00	552		198	257	
723.5	50	941		373	630	
724.0	00	1,406		587	1,217	
724.5	50	1,947		838	2,055	
725.0	00	2,564		1,128	3,183	
725.5	50	3,256		1,455	4,638	
726.0	00	4,024		1,820	6,458	
726.5	50	4,868		2,223	8,681	
727.0	00	5,788		2,664	11,345	
727.5	50	6,783		3,143	14,488	
728.0	00	7,855		3,660	18,147	
728.5	50	9,002		4,214	22,362	
729.0	00	10,224		4,807	27,168	
729.5	50	11,523		5,437	32,605	
730.0		13,213		6,184	38,789	
731.0	00	15,586	1	4,400	53,188	
		La sul				
Device	Routing	Invert	Outlet E			
#1	Primary	722.00'				P, mitered to conform to fill, Ke= 0.700
					21.00' S= 0.014	3 '/' Cc= 0.900
					igated metal	
#2	Device 1	728.50'				ited to weir flow $C = 0.600$
#3	Device 1	723.50'	1.0" Ve C= 0.60		ce/Grate X 6.00 o	columns X 10 rows with 6.0" cc spacing
#4	Secondary	730.00'			0' breadth Broad	d-Crested Rectangular Weir
						0 1.00 1.20 1.40 1.60 1.80 2.00
			· ·	,	4.00 4.50 5.00	
						2.69 2.68 2.68 2.66 2.64 2.64 2.64
					3 2.66 2.68 2.70	

Primary OutFlow Max=3.58 cfs @ 13.05 hrs HW=729.92' (Free Discharge) 1=Culvert (Barrel Controls 3.58 cfs @ 6.6 fps) 2=Orifice/Grate (Passes < 7.03 cfs potential flow) 3=Orifice/Grate (Passes < 3.15 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=722.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: Stormwater Detention Pond

COVER SYSTEM SETTLEMENT

· ·

COMPUTATION COVER SHEET

Client: Matrix Project: Mc	Clellan Final	Cover Systems	Project/Proposal #:	GR3762 Task #: 05
TITLE OF COMPUTATIONS	Cover Syste	m Settlement Ana	lysis	
COMPUTATIONS BY:	Signature Printed Nar and Title	1	www.	<u> 6 Oct 2006</u> DATE
ASSUMPTIONS AND PROCEDU CHECKED BY: (Peer Reviewer)	RES Signature Printed Nar and Title	ne Leslie M. G Project Eng		<u>16 007 2006</u> DATE
COMPUTATIONS CHECKED BY:	Signature Printed Nar and Title	Leslie M. G Project Eng		16 oct 2006 DATE
COMPUTATIONS BACKCHECKED BY: (Originator)	Signature Printed Nat and Title	Jill F. Robo Engineer	Ski	<u>16 oct 2006</u> DATE
APPROVED BY: (PM or Designate)	Signature Printed Nat and Title	^{me} Michael J. M Principal	Ionteleone	16 oct ole DATE
APPROVAL NOTES:				
REVISIONS (Number and initial al	l revisions)			
NO. SHEET I	DATE	ВҮ	CHECKED BY	APPROVAL

GEOSYNTEC CONSULTANTS				1	OF	17
Written by: JFR	Date: 21 Sept 2006	Reviewed by:		_Da	te:	
Client: Matrix	Project: McClellan Final Cover Systems	Project/Proposal No.: GR3762		Та	sk No. <u>:</u>	05

COVER SYSTEM SETTLEMENT ANALYSIS

GEOSYNTEC CONSULTANTS					OF 17	
Written by: JFR	Date: 21 Sept 2006	Reviewed by:		Da	te:	
Client: Matrix	Project: McClellan Final Cover Systems	Project/Proposal No.: GR3762		Ta	sk No. <u>: 05</u>	

EXECUTIVE SUMMARY

In this calculation package, final cover settlements for Landfill 3 (LF3) and the Fill Area North West of Reilly Airfield (FANWR) are evaluated. The final cover settlements were calculated considering short-term primary compression and long-term secondary compression of the waste in the landfill. The effect of the settlements on the cover system final grades was also evaluated.

LF3 was constructed using trenches; waste was placed in the trenches to a maximum depth of 22 ft and covered with soil. FANWR was not constructed in an organized manner; random fill locations were chosen for placement of waste to a maximum depth of 15 ft and then covered by soil. Given that: (i) the waste sources were similar for both LF3 and FANWR, (ii) the depth of waste is greater at LF3, and (iii) the final cover systems are similar; settlements due to final cover placement were calculated for LF3 only. For the purpose of this calculation, the foundation soils and native soils between the trenches were considered incompressible in comparison to the waste and due to the minimal load imparted on the native soils by the cover system. These calculated settlements are considered representative of the anticipated settlement at FANWR.

Settlements were evaluated along a critical cross section where the thickness of the cover system is greatest and the maximum number of assumed waste trenches is intersected. The design pre-settlement grade of the landfill cover along the selected cross section is 1 percent [100 horizontal to 1 vertical (100H:1V)]. The existing landfill waste and cover soil is at an approximate elevation of 740 ft. Results indicate that the maximum primary settlement and total settlement that will occur beneath 7 ft of final cover system grades, the cover system will not maintain positive drainage. However, it is anticipated that primary settlement will occur prior to final grading due to subgrade preparation and placement and compaction effort associated with the construction of the final cover system; thus, minimizing the impact of the total settlement on the final cover system performance.

Negligible tensile strains occur due to primary or secondary settlement.

GEOSYNTEC CONSULTANTS			PAGE	3	OF 17
Written by: JFR	Date: 21 Sept 2006	Reviewed by:		Da	te:
Client: Matrix	Project: McClellan Final Cover Systems	Project/Proposal No.: GR3762		Ta	sk No.: 05

COVER SETTLEMENT CALCULATIONS

PURPOSE

In this calculation package, final cover settlements for the McClellan Landfill No. 3 (LF3) and the Fill Area North West of Reilly Airfield (FANWR) are evaluated. The final cover settlements were calculated considering short-term primary compression and long-term secondary compression of waste in the landfill. The effects of these settlements on the final grades of the cover system were evaluated. Tensile strains induced in the final cover system by differential settlement are also calculated.

BACKGROUND

LF3 operated as a sanitary landfill at McClellan from 1946 to 1967. The landfill was constructed using a series of trenches that extend east-west across the 23 acre site. The waste was placed in the trenches to a maximum depth of 22 ft and subsequently covered with topsoil. A complete list of wastes disposed of at LF3 is not available. Reportedly, the waste includes triple-rinsed pesticide containers, burned ammunition pallets, paint containers, fluorescent bulbs and ballasts, waste oil, and construction debris. The landfill was not capped when it was closed in 1967 and is currently covered in vegetation. Settlement has occurred and is evident in the topographic contours developed by Optimal Geomatics of Huntsville, Alabama on 17 December 2005 (Figure 1).

The FANWR was first identified as a potential disposal area from a 1954 aerial photograph. Wastes reportedly disposed of include paint containers, fluorescent bulbs and ballasts, waste oils, and construction debris. Random fill locations were chosen for placement of waste to a maximum depth of 15 ft and were then covered by soil. The fill area was not capped upon closure circa 1970. The inactive fill area is heavily wooded and vegetated (Figure 1).

METHOD OF ANALYSIS

Given that: (i) the waste sources were similar for both LF3 and FANWR, (ii) the depth of waste is greater at LF3, and (iii) the final cover systems are similar; settlements due to final cover placement were calculated for LF3 only. These calculated settlements are considered representative of the anticipated settlement at FANWR.

GEOSYNTEC	CONSULTANTS	PAGE	4	OF 17
Written by: JFR	Date: 21 Sept 2006 Reviewed by:		Dat	te:
Client: Matrix	Project: McClellan Final Cover Systems Project/Proposal No.: GR3762		Tas	sk No. <u>: 05</u>

Settlements

The compression settlement of municipal solid waste can be analyzed using the one-dimensional consolidation theory commonly used for cohesive soils. Based on this theory, waste settlement has two components: (i) settlement due to primary consolidation and (ii) settlement due to secondary consolidation. The primary settlement component is related to the increase in effective vertical stresses resulting from the landfill final cover system. The secondary settlement component is related to compression of the waste structure (skeleton) and is time-dependent.

Settlements resulting from primary consolidation of the waste were calculated using the general form of the 1-D consolidation theory settlement equation as given below for normally consolidated material [Holtz and Kovacs, 1981]:

$$S_{p} = C_{c\varepsilon} \cdot H \log \left(\frac{\sigma_{vo}' + \Delta \sigma}{\sigma_{vo}'} \right)$$
(1)

where: S_p = primary settlement;

 $C_{c\epsilon}$ = modified primary compression index;

H = initial thickness of compressible layer;

 σ'_{vo} = initial vertical effective stress in the waste (before installation of final cover); and

 $\Delta \sigma$ = increment of vertical stress, due to installation of final cover.

The time rate of primary settlement is a function of the initial structure, compressibility, and the permeability of the waste mass. Because the permeability of the waste mass can vary by several orders of magnitude, the time rate of settlement is often controlled by the permeability. Typically, waste is not saturated. The void spaces can compress quickly and settlement occurs rapidly. GeoSyntec Consultants (GeoSyntec) demonstrated that unsaturated waste loaded with a test fill compresses rapidly (on the order of days) or as fast as the test fill can be constructed in the report entitled "Demonstration of Technical Feasibility: Vertical and Lateral Expansion, South Shelby Landfill, Memphis, Tennessee" [GeoSyntec, 2002]. Immediately following the rapid primary settlement response to the fill placement, the waste continues to settle but at a much slower rate. This settlement is characterized as secondary settlement.

The mechanisms for secondary settlement are mechanical creep, chemical reactions, and biodegradation. This type of compression is dependent on time, not applied loads. Settlements resulting from secondary settlement of the waste were calculated according to the following equation [Holtz and Kovacs, 1981]:

Written by: JFR	Date: 21 Sept 2006 R	Date:	
Client: Matrix	Project: McClellan Final Cover Systems	Project/Proposal No.: <u>GR3762</u>	Task No.: 05
	$S_{t} = C_{\alpha \varepsilon} H \log \left(\frac{t_2}{t_1}\right)$		(2)

where: S_t = time dependent secondary settlement;

- $C_{\alpha\epsilon}$ = modified secondary compression index;
- H = initial thickness of compressible layer;
- t_1 = time when secondary compression is assumed to begin (assumed to be 1 year); and,
- t_2 = time for which secondary settlements are calculated (30 years, corresponding to the end of a typical post-closure period).

Total settlement is the sum of the primary and time dependent secondary settlement. To evaluate settlement of the final cover system, settlement of the native soil should also be taken into account. However, for the purposes of these calculations, the magnitude of the settlement in the native soil is considered to be negligible in comparison to the waste and therefore can be neglected herein.

Tensile Strains:

The effects of waste settlement on the final cover system were evaluated as described below.

Tensile strains in the final cover induced by differential waste settlement were estimated by the following general equation:

$$\varepsilon_{tens} = \frac{L_o - L_f}{L_o} \tag{3}$$

where \mathcal{E}_{tens} = strain in the cover (tension is negative);

 L_o = initial length of cover between adjacent points; and

 L_f = length of cover between adjacent points after settlement has occurred.

The estimated tensile strains were compared to conservative allowable tensile strains of 0.5 percent for compacted clay liner [GeoSyntec, 1995].

Grade changes induced by differential waste settlement were estimated by considering the magnitude of differential settlement and the horizontal distance between adjacent points. The estimated grade changes were then compared to the design grades of the final cover system to check that positive post-settlement surface water flow is maintained.

GEOSYNTE	C CONSULTANTS	PAGE	6	OF	17
Written by:_JFR	Date: <u>21 Sept 2006</u> Reviewed by:		Dat	te:	
Client: Matrix	Project: McClellan Final Cover Systems Project/Proposal No.: GR3762		Tas	sk No. <u>:</u>	05

MATERIAL PARAMETERS

The settlement of waste can be calculated using the same one-dimensional consolidation methods that are used to calculate the settlement of soils as described previously. The modified primary compression index ($C_{c\epsilon}$) and the modified secondary compression index ($C_{\alpha\epsilon}$) are needed for settlement analysis of the waste.

Values of the modified primary compression index reported in technical literature range from 0.08 to 0.46 for municipal solid waste (MSW) [Sowers, 1973; Burlingame, 1985; Landva and Clark, 1990; Fassett et al., 1994]. The most recent of these references [Fassett et al., 1994] presents a compilation of data from a number of sources, reflecting a variety of types of MSW. Fassett et al. [1994] also classify this data based on its reliability and the age of the MSW. The reported modified primary compression index for "old" waste is 0.10 for an evaluation which resulted in "fair" reliability. Based on this, a modified primary compression index value of 0.10 is assumed for settlement analysis.

Values of the modified secondary compression index reported in technical literature are normally less than 0.07 [Sowers, 1973; Landva and Clark, 1990; Fassett et al., 1994]. A value of $C_{\alpha\epsilon}$ with "good" reliability reported by Fassett et al [1994] for "old" waste is 0.01. Based on field tests, GeoSyntec [2002] found that the secondary compression index is directly dependent on the magnitude of the load. For a 10 ft thick surcharge load, the secondary compression index varied from 0.007 to 0.009. Therefore, for this settlement analysis, a $C_{\alpha\epsilon}$ value of 0.009 was used. Tables 1a and 1b present a summary of the parameters used for the waste settlement calculation.

CROSS SECTION ANALYZED

The location of the analyzed cross section with respect to the landfill features is shown in Figure 2. Cross Section A-A' was selected as the most critical section for analysis because it includes a representative range of waste thickness and the maximum final cover grade and thickness to be placed on LF3. Existing borings were projected to the cross section following the east-west trend of the waste trenches, and assuming the waste depth will remain constant for individual trenches. Evidence of settlement in the topographic contours along the cross section was used to define the trench width and the native soil width between waste trenches. The stratigraphy of the cross section is shown in Figure 3.

GEOSYNTEC CONSULTANTS					F 17
Written by:_JFR	Date: 21 Sept 2006 Reviewed	oy:		Date: _	
Client: Matrix	Project: <u>McClellan Final Cover Systems</u> Pr	oject/Proposal No.: <u>GR3762</u>		Task N	o. <u>: 05</u>

RESULTS

A graphical presentation of the pre- and post-settlement grades for the analyzed cross section is shown in Figure 4. Results of the settlement analysis are summarized in Table 2. Details of the settlement analysis are included in Attachment 1.

SUMMARY AND CONCLUSIONS

Results indicate that the maximum primary settlement and total settlement that will occur beneath 7 ft of final cover material are 0.81 and 1.1 ft respectively. Based on calculated post-primary and secondary settlement cover system grades, the cover system will not maintain positive drainage. However, as mentioned previously, GeoSyntec [2002] demonstrated that primary settlements occur rapidly for unsaturated waste. Therefore, it is anticipated that primary settlement will occur prior to final grading due to subgrade preparation and placement and compaction effort associated with the construction of the final cover system; thus, minimizing the impact of the total settlement on the final cover system performance.

Negligible tensile strains (i.e., <<0.5 percent) occur due to primary or secondary settlement.

GEOSYNTEC CONSULTANTS			PAGE	8	OF 1	7
Written by: JFR	Date: 21 Sept 2006	Reviewed by:		_Dat	te:	
Client: Matrix	Project: McClellan Final Cover Systems	Project/Proposal No.:_GR3762		Tas	sk No. <u>:</u>	05

REFERENCES

GeoSyntec Consultants, "Final Cover System Guidance Document, Municipal Solid Waste Landfills", prepared for the State of Maine, Department of Environmental Protection, 1995.

GeoSyntec Consultants, "Demonstration of Technical Feasibility: Vertical and Lateral Expansion, South Shelby Landfill, Memphis, Tennessee", prepared for BFI Waste Systems of North America, Inc., Project Number GG0904, March 2002.

Burlingame, M.J, "Construction of a Highway on a Sanitary Landfill and its Long Term Performance", *Transportation Research Record 1031*, TRB, Washington, DC, 1985, pp. 34-40.

Fasset, J., Leonards, G., and Repetto, P, "Geotechnical Properties of Municipal Solid Wastes and Their Use in Landfill Design", *Proceedings of Waste Tech 94*, Charleston, SC, 1994, pp. 1-31.

Holtz, R.D., and Kovacs, W.D, "An Introduction to Geotechnical Engineering", Prentice-Hall, Inc., Englewoods Cliffs, NJ, 1981.

Landva, A. and Clark, J, "Geotechnics of Waste Fill", *Geotechnics of Waste Fills – Theory and Practice*, ASTM STP 1070, A. Landva, and D. Knowles, Eds., Philadelphia, PA, 1990, pp. 86-103.

Sowers, G.F, "Settlement of Waste Disposal Fills", *Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering*, Moscow, 1973, pp. 207-210.

GEOSYNTE	EC CONSULTANTS	PAGE	9	OF	17
Written by: JFR	Date: 21 Sept 2006 Reviewed by:		Da	nte:	
Client: Matrix	Project: McClellan Final Cover Systems Project/Proposal No.: GF	3762	Ta	isk No.	: 05

TABLES

GEOSYNTEC CONSULTANTS	PAGE	10	OF 17	_

Written by: JFR _____ Date: 21 Sept 2006 Reviewed by: _____

Date:

Client: Matrix Project: McClellan Final Cover Systems Project/Proposal No.: GR3762 Task No.: 05

Table 1a. Waste consolidation parameters.

	$C_{c\epsilon}$	Cae
Waste	0.10	0.009

Table 1b. Material unit weights and thicknesses used for waste settlement calculation.

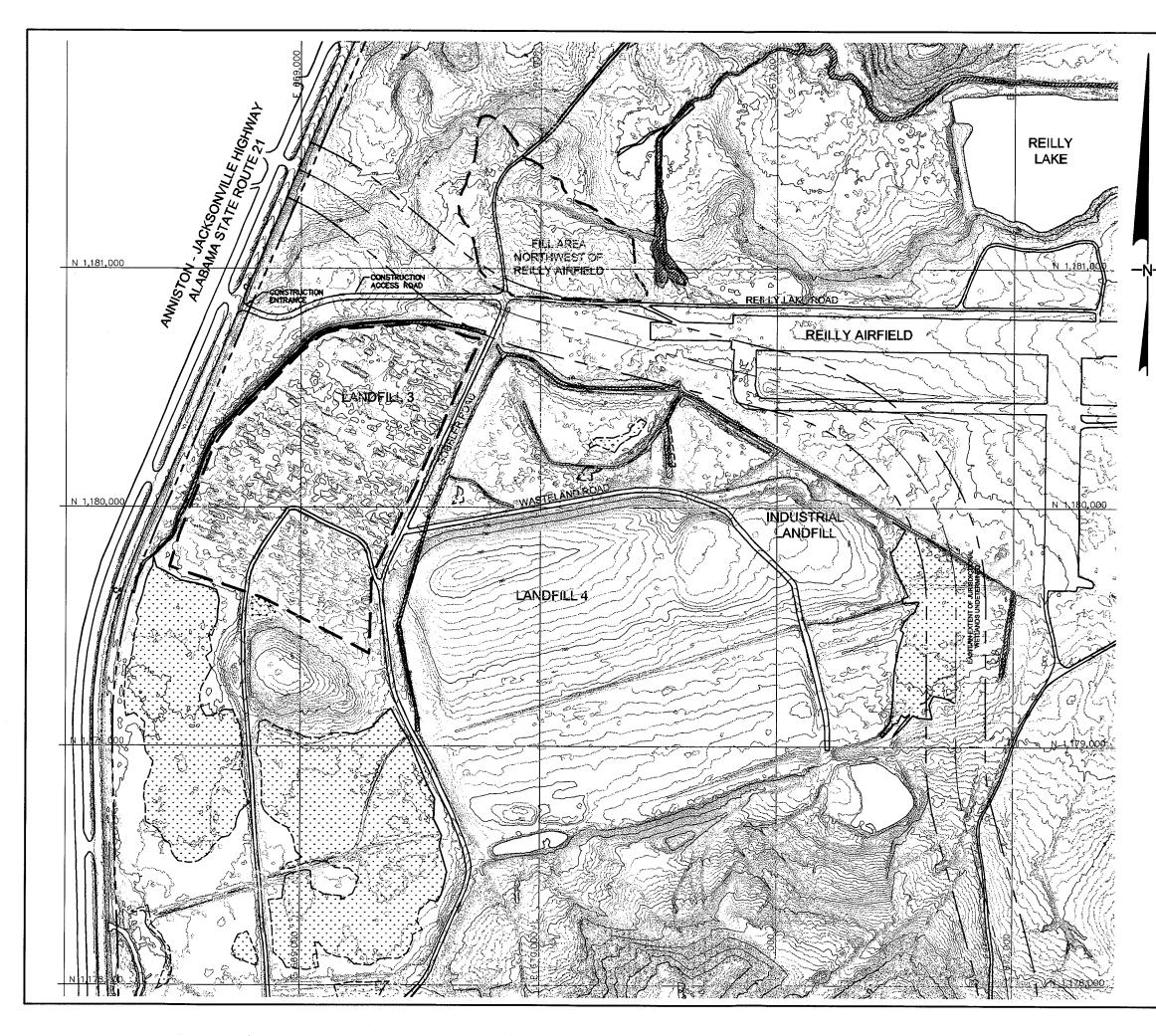
	γ(pcf)	Thickness (ft)
Final Cover	120	Varies from 2 to 7 ft
Waste	70	Varies from 0 to 22 ft

GEOSYNTEC CONSULTANTS	

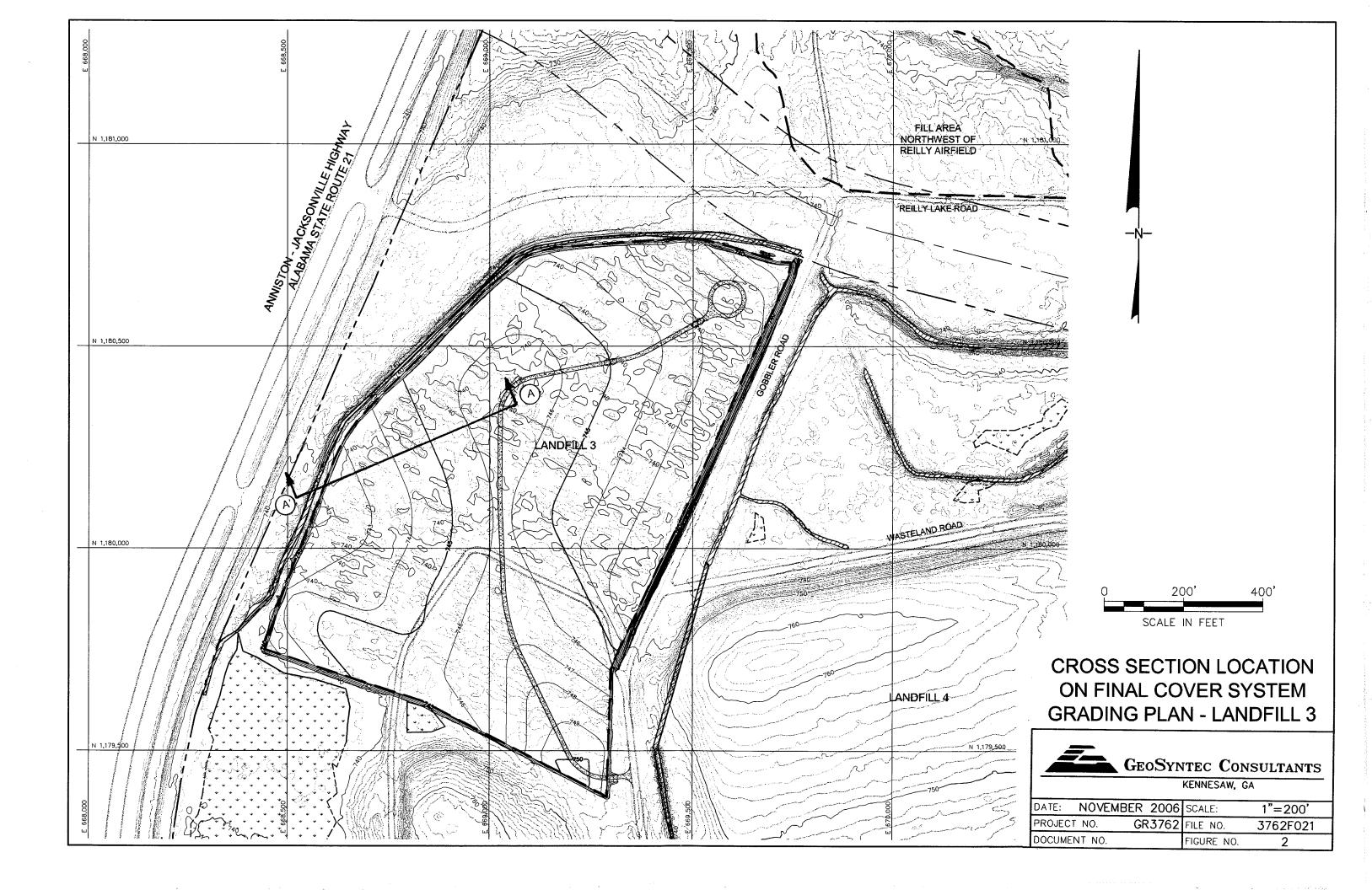
 Written by: JFR
 Date: 21 Sept 2006
 Reviewed by: ______
 Date: ______

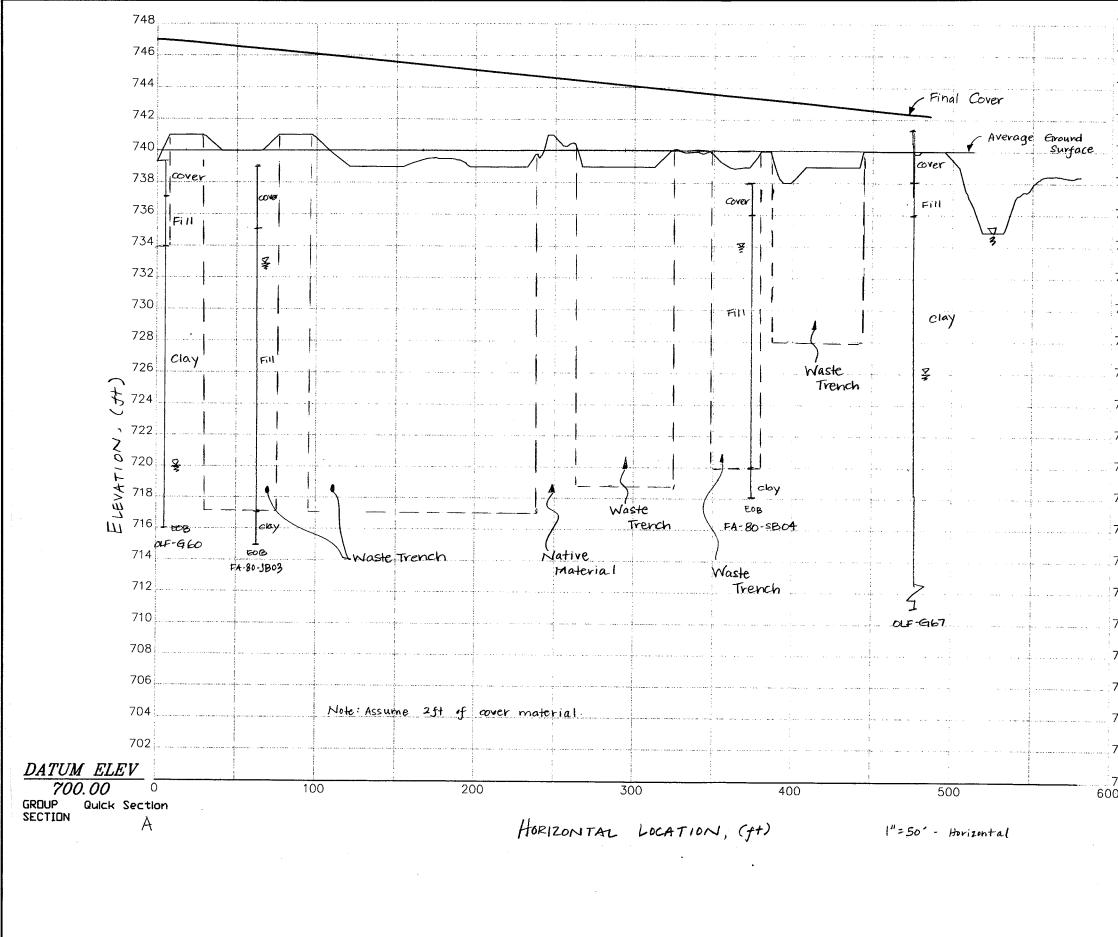
Client: Matrix Project: McClellan Final Cover Systems Project/Proposal No.: GR3762 Task No.: 05

Table 2. Summary of settlement calculations.


Cross Section Analyzed	Time Period	Maximum Settlement (ft)	Maximum Tensile Strain (%)
A-A'	Primary Settlement	0.81	0.005
A-A'	Total Settlement	1.1	0.005

GEOSYNTE	C CONSULTANTS	PAGE	12	OF 1'	7
Written by: JFR	Date: 21 Sept 2006 Reviewed by:		Dat	e:	
Client: Matrix	Project: <u>McClellan Final Cover Systems</u> Project/Proposal No.: <u>G</u>	R3762	Tas	k No. <u>:</u>	05


FIGURES



(a) A set of the se

0 4	00' 800'
SCALE	IN FEET
EXISTING SIT	E CONDITIONS
_	
GEOSYI	NTEC CONSULTANTS
	KENNESAW, GA
DATE: NOVEMBER 2006	SCALE: 1"=400'
PROJECT NO. GR3762	FILE NO. 3762F020
DOCUMENT NO.	FIGURE NO. 1

748	
746	
744	
742	
740	
738	
736	
734	
732	
730	
728	
726	
724	
722	
720	
718	
716	
714	, ,
712	
710	
708	
706	
704	
702	
700 10 A	CROSS SECTION A-A' STRATIGRAPHY
A	
	GEOSYNTEC CONSULTANTS KENNESAW, GA
	DATE: NOVEMBER 2006 SCALE: AS SHOWN
	PROJECT NO. GR3762 FILE NO. 3762F021
	DOCUMENT NO. FIGURE NO. 3

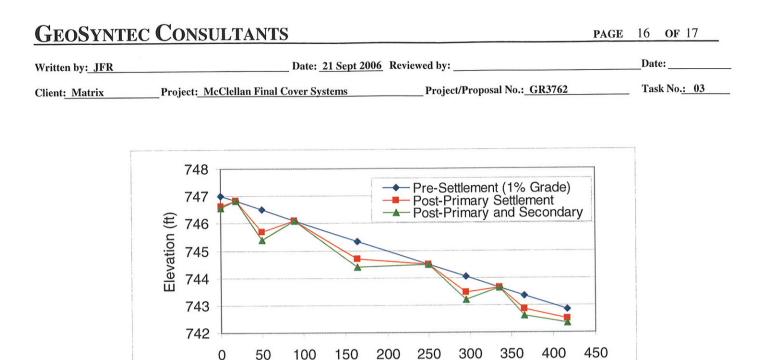


Figure 4. Summary of settlements in waste along Cross Section A-A' due to final cover loading.

Horizontal Location (ft)

0

50

100

ATTACHMENT 1

Written by	JFR		Date:	6,09,0	6 Review	ved by:		Date: / / /	
Client:	Matrix	Project:	Mcclellan	- LF3	_ Project	Proposal No.:	R3762	_ Task No:	
		Pri	mary Se -F-3 t	ettlen 1cCle	il an	Calcul Landfi	ation 11 Cap	S	
PURP	OSE :	ant	purpose to calci icipated ste ma	7 Pri	mar	calculat magnit y settle LF 3.	tion pa ude of ment q	ckage the the the	
MET	HOD:	-10110	owing *	2 quat	700	-	,	to the	
		Where	:			JVO' -	[Ref.	Ho +z; Kovacs, 19817	
		C H	Cce = mo to = init Tvo' = init the	FIAL	te (before in	ective	sion index ssible by stress in tion of	yer
		4	$d\sigma = incr$	emen	+ 0		al stres ation	ss due to	
Par	AMETER		See Cal SETTLEME DISCUSSIO CCE = C	nt of	ioh ANA Pa	Package Lysis " fo rameter	"Cover or comp select	r System Diete Ton.	
					Ass	sume wa	ste is	Normally Consolidated	I
	1 PLE Calculy		calculation	h of	set zon-	ed sprea Hement tal 16ca t. Setti one 1	at ea tion o	for ch is is n as follo	ws:

, <u> </u>	FR			wed by:	
lient: <u>Mat</u>	<u>rix</u> Proj	ject: MCClelli	an · LF3 Projec	t/Proposal No.: <u>GR 376</u> Z	Task No:
EXAMPL	E	HOF	ZIZONTAL	LOCATION =	416 ft
CAL	-CULATIC	(cont) -	Waste Parameter 8=70 pcf	s í
2'	•a Ce	over cexisting)	$\Sigma_{i}H_{o_{i}} = 12ft$ $\Delta T = 3ft(12)$	0 p(f) = 360 ps
10'	-d	vaste fill		$C_{CE} = 0.1$ $C_{RE} = 10^{\circ}/_{\circ} (0$	CE) = 0.01
	∘e ∙f			$C_{RE} = 0.009$ $\sigma_{P}' = \sigma_{vo}'$ (
Sett		in Was	te:	Final Cover :	X=120pcf
all of the latter of the		o'= 1 ft (1		120psf	
		log (tvo't			ana an
2	0.1 (2;	f+) 10g (120 psf + 120	$\frac{360 \text{ psf}}{\text{psf}} = 0.$	12 ft
Point (6): OV	0'= 2ft (1	20 pcf) +	15+ (70 pef)	= 310 psf
Spb =	CCE HO	10g (540' +	- 45)	(Jp' = Jvo ')	
	: 0,1 (2,	ft) log (310 psf + 310	$\frac{360psf}{psf} = 0.0$	67 ft
Point (c): Jro	5' = 2ft (12)	0 pcf) + 3.	f+(70 pcf) = 4	50 psf
Spe =	CCE Ho	109 (<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	40)	(op'= ovo')	
Z	0.1 (2;	f+) log (4	50 psf + 3 450 p	(opsf) = 0.0	5.1 ft
Dainel /	d): 00	0'= 25+ (120pcf)+	5f+(70pef)=	590 psf
		the second se		(op = ovo)	

Written by: <u>JFR</u> <u>Date: $\frac{06}{79} \frac{106}{900}$ Reviewed by: <u>Date: $\frac{1}{91} \frac{1}{100} \frac{1}{100}$</u> Chent: <u>Matrix</u> project: <u>McClellan LF3</u> project/Proposal No: <u>GR3762</u> Tak No: Point (c): σ_{vo}: 2ft (20 pcf) + 7ft (70 pcf) = 730 psf Sce = Cce Ho log (σ_{vo}: <u>4</u> <u>AT</u>) (σ_{p}: σ_{vo}:) = 0.1 (2ft) log ($730 \text{ psf} + 360 \text{ psf}$) = 0.025 ft Point (f): σ_{vo}: 2ft (120 pcf) + 9ft (70 pcf) = 870 psf Spf = Cce to log (σ_{vo}: <u>4</u> <u>AT</u>) (σ_{p}: σ_{vo}:) = 0.1 (2ft) log (870 ± 260) = 0.03 ft Spf = Cce to log (σ_{vo}: <u>4</u> <u>AT</u>) (σ_{p}: σ_{vo}:) = 0.1 (2ft) log (870 ± 260) = 0.03 ft Spf = Cce to log (σ_{vo}: <u>4</u> <u>AT</u>) (σ_{p}: σ_{vo}:) = 0.1 (2ft) log (870 ± 260) = 0.03 ft Sp = Σ_{1} Spj = 0.12 ft + 0.067 ft + 0.051 ft + 0.064 l ft + 0.035 ft + 0.03 ft = 0.24 ft Summary settlements. Summary of primary settlements.</u>
Point (c): $\sigma_{vo'} = 2ft (20pcf) + 7ft (70pcf) = 730psf$ Sce = Cce Ho log $(\sigma_{vo'} + \Delta r)$ ($\sigma_{p'} = \sigma_{vo'}$) = 0.1 (2ft) log $(730psf + 360psf) = 0.025$ ft Point (f): $\sigma_{vo'} = 2ft (120pcf) + 9ft (70pcf) = 870psf$ Spg = Cce to log $(\sigma_{vo'} + \Delta r)$ ($\sigma_{p'} = \sigma_{vo'}$) = 0.1 (2ft) log $(870 + 360) = 0.03$ ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.04 l ft + 0.035 ft + 0.023 ft = 0.24 ft Summary of primary settlements.
Point (c): $\sigma_{vo'} = 2ft (20pcf) + 7ft (70pcf) = 730psf$ Sce = Cce Ho log $(\sigma_{vo'} + \Delta r)$ ($\sigma_{p'} = \sigma_{vo'}$) = 0.1 (2ft) log $(730psf + 360psf) = 0.025$ ft Point (f): $\sigma_{vo'} = 2ft (120pcf) + 9ft (70pcf) = 670psf$ Spg = Cce to log $(\sigma_{vo'} + \Delta r)$ ($\sigma_{p'} = \sigma_{vo'}$) = 0.1 (2ft) log $(870 + 360) = 0.03$ ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) log (870 + 360) = 0.03 ft = 0.1 (2ft) + 0.067 ft + 0.051 ft + 0.021 ft + 0.021 ft + 0.035 ft + 0.035 ft + 0.025 ft = 0.24 ft SummARY: See Table A1 for a summary of primary settlements.
Sce = Cce Ho log $(\underline{\sigma_{vo'} + \Delta \sigma})$ $(\sigma_{p'} = \sigma_{vo'})$ = 0.1 (25t) log $(\underline{730 \text{ psf} + 360 \text{ psf}}) = 0.025$ st Point (f): $\sigma_{vo'} = 25t$ (120 pcf) + $95t$ (70 pcf) = 870 psf Spf = Cce to log $(\underline{\sigma_{vo'} + \Delta \sigma})$ $(\sigma_{p'} = \sigma_{vo'})$ = 0.1 (25t) log $(\underline{870 + 360}) = 0.03$ st $5p = \Sigma_{1} \text{Sp}_{1} = 0.125t + 0.0675t + 0.0515t + t$ 0.0415t + 0.0355t + 0.035t = 0.245t Summapy: See Table A1 for a summary of primary settlements.
$= 0.1(2ft) \log \left(\frac{730 psf + 360 psf}{730 psf} \right) = 0.025 \text{ ft}$ Point (f): $dvo' = 2ft$ (120 psf) + $9ft$ (70 psf) = $870 psf$ $Spf = Core to \log \left(\frac{9vo' + \Delta \sigma}{9vo'} \right) (\sigma p' = \sigma vo')$ $= 0.1 (2ft) \log \left(\frac{870 + 360}{870} \right) = 0.03 \text{ ft}$ $5p = \sum Spi = 0.12ft + 0.067 \text{ ft} + 0.051 \text{ ft} + 0.021 \text{ ft} + 0.021 \text{ ft} = 0.24 \text{ ft}$ SummAPY: See Table A1 for a summary of primary settlements.
$= 0.1(2ft) \log \left(\frac{730 psf + 360 psf}{730 psf} \right) = 0.025 \text{ ft}$ Point (f): $dvo' = 2ft$ (120psf) + $9ft$ (70 psf) = $870 psf$ $Spf = Core to \log \left(\frac{9vo' + \Delta \sigma}{9vo'} \right) (\sigma p' = \sigma vo')$ $= 0.1 (2ft) \log \left(\frac{870 + 360}{870} \right) = 0.03 \text{ ft}$ $5p = \sum Spi = 0.12ft + 0.067 \text{ ft} + 0.051 \text{ ft} + 0.031 \text{ ft} + 0.031 \text{ ft} = 0.24 \text{ ft}$ SummAPY: See Table A1 for a summary of primary settlements.
Point (f): $\sigma_{vo'} = 2ft$ (120p(f) + gft (70 p(f) = $g70$ psf $Sp_f = Cce$ to log ($\sigma_{vo'} + \Delta \sigma$) ($\sigma_{p'} = \sigma_{vo'}$) $= 0.1$ ($2ft$) log ($\frac{870 + 360}{870}$) = 0.03 ft $Sp = \Sigma Sp_i = 0.12ft + 0.067 ft + 0.051 ft + 0.021 ft + 0.035ft + 0.035ft + 0.03 ft = 0.24 ft$ Summary: See Table A1 for a summary of primary settlements.
$S_{pf} = C_{ce} + o \log \left(\frac{\sigma_{vo'} + \Delta \sigma}{\sigma_{vo'}} \right) (\sigma_{p}' = \sigma_{vo'})$ $= 0.1 (2ft) \log \left(\frac{870}{870} \right) = 0.03 ft$ $S_{p} = \sum S_{pi} = 0.12ft + 0.067ft + 0.051ft + 0.03ft = 0.24ft$ $= 0.041ft + 0.035ft + 0.03ft = 0.24ft$ $See Table A1 for a summary of$ $Primary settlements.$
$S_{pf} = C_{ce} + o \log \left(\frac{\sigma_{vo'} + \Delta \sigma}{\sigma_{vo'}} \right) (\sigma_{p}' = \sigma_{vo'})$ $= 0.1 (2ft) \log \left(\frac{870}{870} + \frac{360}{870} \right) = 0.03 \text{ft}$ $S_{p} = \sum S_{pi} = 0.12ft + 0.067ft + 0.051ft + 0.03ft = 0.24ft$ $= 0.041ft + 0.035ft + 0.03ft = 0.24ft$ $See \text{Table} A1 \text{for} a \text{summary} \text{of}$ $\text{primary} \text{settlements}.$
$= 0.1 (2ft) \log \left(\frac{870 + 360}{870}\right) = 0.03 \text{ ft}$ $= 5p = \sum \sum i = 0.12ft + 0.067 \text{ ft} + 0.051 \text{ ft} + 0.041 \text{ ft} + 0.035\text{ ft} + 0.03 \text{ ft} = 0.24 \text{ ft}$ $= 0.041 \text{ ft} + 0.035\text{ ft} + 0.03 \text{ ft} = 0.24 \text{ ft}$ $= 5ummapy = 5ee \text{ Table A1 for a summary of primary settlements.}$
$5p = \sum_{i} \sum_{j} \sum_{i} \sum_{j}$
$5p = \sum_{i} S_{pi} = 0.12ft + 0.067ft + 0.051ft + 0.041ft + 0.035ft + 0.03ft = 0.24ft$ $Summary:$ $See Table A1 for a summary of primary settlements.$
Summary: See Table Al for a summary of primary settlements.
Summary: See Table Al for a summary of primary settlements.
Summary See Table Al for a summary of primary settlements.
the second s

Settlement in Waste				
Horizontal				
Location	Settlement			
<u>(ft)</u>	(ft)			
0	0.386			
18	0			
50	0.805			
90	0			
165	0.662			
250	0			
295	0.582			
335	0			
365	0.487			
416	0.34			
460	0.00			

Table A1. Primary

Written by: <u>JFR</u>	Date: $\frac{06}{YY} / \frac{08}{MM} / \frac{31}{DD}$ Reviewed by:	Date:///////
Client: Matrix		
	Secondary Settlement Calculation LF3 - McClellan Landfill Ca	on
PURPOSE :	The purpose of this calculation p to calculate the magnitude of anticipated secondary consolid the Waste material of LF3	of the ation of
METHOD :	The secondary settlement of the material was calculated acco the following equation:	rding to
	$S_{t} = C_{dE} H \log \left(\frac{t_{2}}{t_{1}}\right) E_{Ref.}$ Where:	Holtz & Kovars, 1981
	CdE = madified secondary com H = initial thickness of comp ti = time when secondary c begins to = time for which secon compression is calcul	iompression iompression
PARAMETERS	S: See Calculation Package "Cover SETTLEMENT ANALYSIS" for comp discussion of parameter self	olete
	Cae = 0.009 H = varies according to location $t_2 = 30$ years, corresponding to of a typical post closure per $t_1 = 1$ year	the end
EXAMPLE CALCULA	$TION: St = Core H log(\frac{t_2}{t_1}) C$	Horizontal Location=35ft
e service er an broken broken er an ann er	$St = 0.009(22f+)\log(30)$	= 0.29 ft

GEO2	YNTEC U	ONSULTANTS		Page of
Written by:	JFR	Date. <u></u> / <u></u> ///////	31 Reviewed by:	Date:////
Client:	Matrix	Project: McClellan Landfin	/ Project/Proposal No.:	Task No:
Sur	IMARY :	See Table Az secondary se calculation	for a sum H lement at point.	rmary of each

Settlement in Waste			
Horizontal Location	Secondary Settlement		
(ft)	(ft)		
0	0.053		
18	0.000		
50	0.292		
90	0.000		
165	0.292		
250	0.000		
295	0.266		
335	0.000		
365	0.239		
416	0.133		
460	0.000		

.

Table A2. Secondary Settlement in Waste

GEOSYNTEC	CONSULTANTS	Page <u>8</u> of <u>9</u>
Written by: JFR	Date: $\frac{0.6}{YY} \frac{1.09}{MM} \frac{1.06}{DD}$ Reviewed by:	Date: / /
Client: Matrix	Project: Mcclellan LF3 Project/Proposal No.: GR 37	62 Task No:
	Tensile Strain Calculation LF3 McClellan Landfill Cap	22
PURPOSE :	The purpose of this calculation p calculate the magnitude of the c tensile strains in the final a induced by differential waste	anticipated
METHOD	Tensile strains in the final con calculated according to the equation:	ier were Jollowing
	Etens = Lo-Lf Lo	
	Etcns = strain in the cover (Lo = initial length of cover b points Lf = length of cover between points after settlement	
EXAMPLE	ioni:	
	At HORIZONTAL LOCATION = 416	f+
For prime	ary settlement only:	
	$E_{\text{tens}} = \frac{L_0 - L_f}{L_0} = \frac{44.0022 - 44.00}{44.0022}$	01 = -0.0048
Refer to tensile agter	the attached Table A3 for a surre strains after primary settlem primary settlem	ent and ent.

Æ

l'ensile Strain due to Primary Settlement			
Horizontal Location (ft)	L _o (ft)	L _f (ft)	Strain, ε (%)
0	18.001	18.001	0.002
18	32.002	32.020	0.057
50	40.002	40.002	0.000
90	75.004	75.013	0.013
165	85.004	85.000	-0.005
250	45.002	45.012	0.021
295	40.002	40.000	-0.004
335	30.001	30.010	0.029
365	51.003	51.001	-0.002
416	44.002	44.000	-0.005

Table A3a. Final Cover System Tensile Strain due to Primary Settlement

Table A3b. Final Cover System Tensile Strain due to Primary and Secondary Settlement

Horizontal			
Location	Lo	L _f	Strain, ε
(ft)	(ft)	(ft)	(%)
0	18.001	18.002	0.005
18	32.002	32.031	0.093
50	40.002	40.006	0.010
90	75.004	75.019	0.021
165	85.004	85.000	-0.005
250	45.002	45.019	0.037
295	40.002	40.003	0.001
335	30.001	30.018	0.053
365	51.003	51.001	-0.004
416	44.002	44.000	-0.005

QUANTITY ESTIMATE

	Written by: JFR	Date: <u>9 Feb 2007</u>	Reviewed by: LMG	
)	Client: Matrix	Project: McClellan Final Cover Systems	Project/Proposal No.: <u>GR3762</u>	Task No. <u>: 05</u>

McCLELLAN FINAL COVER SYSTEMS QUANTITY ESTIMATE CALCULATION PACKAGE

GEOSYNTEC CONSULTANTS				2	OF 9
Written by: JFR	Date: <u>9 Feb 2007</u>	_ Reviewed by: <u>LMG</u>		Dat	e: <u>9 Feb 2007</u>
Client: Matrix	Project: McClellan Final Cover Systems	Project/Proposal No.: GR3762		Tas	k No.: 05

EXECUTIVE SUMMARY

The purpose of this calculation package is to estimate the material quantities for the construction of the final cover systems at McClellan for Landfill 3 (LF3) and the Fill Area Northwest of Reilly Airfield (FANWR) as presented in the Final (100%) Drawings (Design Drawings) dated February 2007.

For each material, the applicable drawing details, cross-sections, and plans were used for calculating quantities. Quantities were calculated using measurements from (i) the Design Drawings, Appendix B of the Design Report, (ii) the Construction Best Management Practices Plan Drawings (ES Drawings) included in the Draft Permits, (iii) the Technical Specifications, Appendix C of the Design Report, (iv) the Borrow Area Management Plan, and (v) using the grid/prismoidal volume method within the computer program Land Development Desktop for AutoCAD.

Quantities provided in the calculation package are estimated quantities (i.e., assumed to be within $\pm 10\%$ of the estimated quantity based on the accuracy of the existing topographic survey). Quantities were provided for the purpose of developing the engineers cost estimate and are not provided for the purpose of ordering or procuring materials. The construction contractor will be responsible for determining material quantities for these purposes.

Task No.: 05

GEOSYNTH	EC CONSULTANTS		PAGE	3	OF 9
Written by: <u>JFR</u>	Date: <u>9 Feb 2007</u>	Reviewed by: LMG	····	Da	te: <u>9 Feb 2007</u>
Client: Matrix	Project: McClellan Final Cover Systems	Project/Proposal No.: <u>GR3762</u>		Та	sk No.: 05

McCLELLAN FINAL COVER SYSTEMS QUANTITY ESTIMATE CALCULATION PACKAGE

PURPOSE

The purpose of this calculation package is to estimate material quantities for construction of the final cover systems at McClellan for Landfill 3 (LF3) and the Fill Area Northwest of Reilly Airfield (FANWR) as presented in the Final (100%) Design Drawings (Design Drawings) dated February 2007.

METHOD

For each material, the applicable drawing details, cross-sections, and plans were used for calculating quantities. Quantities were calculated using measurements from (i) the Design Drawings, Appendix B of the Design Report, (ii) the Construction Best Management Practices Plan Drawings (ES Drawings) included in the Draft Permits, (iii) the Technical Specifications, Appendix C of the Design Report, (iv) the Borrow Area Management Plan, and (v) using the grid/prismoidal volume method within the computer program Land Development Desktop for AutoCAD.

CONCLUSIONS

Quantity estimates are provided in Table 1 for FANWR, in Table 2 for LF3, in Table 3 for general construction areas, and Table 4 for the borrow areas. Each table is organized by specification section. Each line item includes unit, quantity, and reference. The reference indicates the drawing number or figure number from which each quantity was derived. These quantity estimates are summarized for the purpose of developing a cost estimate, a schedule of estimated quantities, and confirming construction bids. These quantities are estimated quantities (i.e., assumed to be within $\pm 10\%$ of the estimated quantity based on the accuracy of the existing topographic survey).

TABLES

TABLE 1. Quantity Estimate Summary McClellan Final Cover Systems FILL AREA NORTHWEST OF REILLY AIRFIELD

SPEC SECTION	ITEM DESCRIPTION	UNIT	Estimated Quantity	Reference
02110	SITE PREPARATION			
02110	Removal of Gobbler Road (asphalt)	LF	725	7
	Removal of Reilly Lake Road (asphalt)	LF	670	7
	Silt Fence	FT	6,662	ES-3
	Check Dam	EA	8	ES-3, ES-
02115	CLEARING AND GRUBBING			
02115	Clear, Grub, and Strip	SF	58,567	Fig. 02115
	Clear and Grind	SF	30,220	Fig. 02115
	Select Clear and Grind	SF	27,229	Fig. 02115
	Stump Grinding	SF	78,201	Fig. 02115
02200	EARTHWORK		I	
02200	Structural Fill (does not include pond)	CY	28,950	8, 12
	Low Permeability Soil Fill (18 inch thickness)	CY	20,790	8, 12
	Surface Water Sediment Detention Pond		-	-
	Soil Excavation (includes northern perimeter ditch)	CY	378	7
	Soil Fill (includes northern perimeter ditch)	CY	2,241	7
	Perimeter Swale (East)	FT	174	8
	Perimeter Swale (North)	FT	145	7
02204	TOPSOIL AND VEGETATION			
02201	Topsoil	CY	6,930	8
	Specialty Landscaping		-	-
	Trees		-	-
	Red Maple	EA	19	9
	River Birch	EA	5	9
	Loblolly Pine	EA	17	9
	Sycamore	EA	2	9
	Tulip Poplar	EA	3	9
	Flowering Dogwood	EA	5	9
	Sourwood	EA	4	9
	Eastern Redbud	EA	25	9
	Shrubs		-	_
	Virginia Sweetspire	EA	30	9
	Buttonbush	EA	28	9
	Beautyberry	EA	14	9
	Oakleaf Hydrangea	EA	35	9
	Wildflowers	SF	84,175	9
	Grass (Including Erosion Mat)	SF	501,671	8
02206	WASTE EXCAVATION AND HANDLING		•	
	Waste Excavation, Placement, and Regrading	CY	19,440	7
02208	CRUSHED STONE ROADWAY			
	Gobbler Road Aggregate Base	CY	160	17
	Reilly Lake Road Aggregate Base	CY	150	17
	Parking Area Aggregate Base	CY	140	8
	Walking Path Crushed Stone	CY	525	8, 17
02209	RIPRAP AND DRAINAGE AGGREGATE			
	Spillway Riprap	ĊY	80	16
02720	GEOTEXTILE SEPARATOR			
	Excavation Area	SF	15,250	7
	Parking Area	SF	7,560	9
	Beneath Gobbler Road Replacement	SF	8,700	9, 17
	Beneath Reilly Lake Road Replacement	SF	8,040	9, 17
	Spillway Area	SF	1,419	7,16
	Beneath Walking Path	SF	28,280	17

TABLE 1. Quantity Estimate Summary McClellan Final Cover Systems FILL AREA NORTHWEST OF REILLY AIRFIELD

SPEC SECTION	ITEM DESCRIPTION	UNIT	Estimated Quantity	Reference ⁽¹⁾
02830	SPLIT RAIL FENCE			
	Split Rail Fence	FT	490	9, 17
VARIOUS	MISCELLANEOUS			
	Well Extension	EA	1	9, 17
	PVC (2-inch and 4-inch)	EA	1 ·	17
	Protective Casing (2-inch and 4-inch)	EA	1	17
1	Grout, bentonite, sand	EA	1	17
	Concrete pad	EA	1	17
	Bollards	EA	3	17
	Spillway			
	Principal Spillway Riser w/Base and Anti Vortex			
	Device (15 in. diameter, corrugate metal)	EA	1	16
	Stone Core (2 inch diameter)	CY	15	16
]	Principal Spillway Pipe (CMP, 10 inch diameter)	FT	75	16

Note: (1) The Design Drawings referenced are included in Appendix B of the Design Report (Bid Documents, Volume II of IV). The Construction Best Management Practices Plan Drawings (ES Drawings) referenced are included in the Draft Permits (Bid Documents, Volume IV of IV). The Technical Specifications figures are included in Appendix C of the Design Report (Bid Documents, Volume II of IV).

TABLE 2. Quantity Estimate Summary McClellan Final Cover Systems LANDFILL 3

SPEC SECTION	ITEM DESCRIPTION	UNIT	Estimated Quantity	Reference ⁽¹⁾		
2110	SITE PREPARATION					
	Silt Fence	FT	8,835	ES-2		
	Check Dam	EA	10	ES-2, ES-6		
2115	CLEARING AND GRUBBING					
	Clear (Cap Area)	SF	27,585	Fig. 02115-3		
	Stump Grinding	SF	199,843	Fig. 02115-1		
2200	EARTHWORK					
	Structural Fill	CY	75,282	4, 10, 11		
	Low Permeability Soil Fill (18 inch thickness)	CY	53,883	4, 10, 11		
	Access Road Structural Fill	CY	19	15		
	Perimeter Swale (East)	FT	1,104	5		
	Diversion Berm	FT	4,545	4		
2204	TOPSOIL AND VEGETATION					
	Topsoil (6 inch)	CY	17,961	4, 10, 11		
	Vegetation (Including Erosion Mat)	AC	24	4, 10, 11		
2208	CRUSHED STONE ROADWAY					
	Access Road Aggregate Base	CY	365	4, 17		
2209	RIPRAP					
	Riprap	CY	83	15		
2720	GEOTEXTILE					
	Access Road	SF	19,560	4, 17		
VARIOUS	MISCELLANEOUS					
	Well Extension	EA	5	17		
	PVC (2-inch and 4-inch)	EA	5	17		
	Protective Casing (2-inch and 4-inch)	EA	5	17		
	Grout, bentonite, sand	EA	5	17		
	Concrete pad	EA	5	17		
	Bollards	EA	15	17		
	Outlet Structure Pipe (6-inch diameter, CMP)	FT	270	14		

Note: (1) The Design Drawings referenced are included in Appendix B of the Design Report (Bid Documents, Volume II of IV). The Construction Best Management Practices Plan Drawings (ES Drawings) referenced are included in the Draft Permits (Bid Documents, Volume IV of IV). The Technical Specifications figures are included in Appendix C of the Design Report (Bid Documents, Volume II of IV).

TABLE 3. Quantity Estimate Summary McClellan Final Cover Systems GENERAL CONSTRUCTION AREA

SPEC SECTION	ITEM DESCRIPTION	UNIT	Estimated Quantity	Reference ⁽¹⁾		
	CRUSHED STONE ROADWAY					
	Construction Entrance Road (24 ft width)	FT	2,650	6		
	Upgrade Gobbler Road (15 ft width/6" aggregate base)	LF	1,660	4		
2720	GEOTEXTILE					
VARIOUS	Restoration of Gobbler Road	SF	24,900	17		
	MISCELLANEOUS					
	Boundary Survey Permanent Monument ⁽²⁾	EA	25	4, 8, 17		

Note: (1) The Design Drawings referenced are included in Appendix B of the Design Report (Bid Documents, Volume II of IV). (2) Concrete monuments to be provided by owner.

TABLE 4. Quantity Estimate Summary
McClellan Final Cover SystemsBORROW AREA No. 2 AND STOCKPILES FROM BORROW AREA No. 4

SPEC SECTION	ITEM DESCRIPTION	UNIT	Estimated Quantity	Reference ⁽¹⁾	
2110	SITE PREPARATION				
	Silt Fence (Stockpiles from BAS-4)	FT	9,350	ES-4	
	Silt Fence (BAS-2)	FT	5,350	ES-4	
2115	CLEARING AND GRUBBING				
	Clear, Grub, and Strip (BAS-2)	AC	11	2, Fig. 02115-5	
2204	VEGETATION				
	Vegetation/Restabilization	AC	19.5	2	

Note: (1) The Design Drawings referenced are included in Appendix B of the Design Report (Bid Documents, Volume II of IV). The Construction Best Management Practices Plan Drawings (ES Drawings) referenced are included in the Draft Permits (Bid Documents, Volume IV of IV). The Technical Specifications figures are included in Appendix C of the Design Report (Bid Documents, Volume II of IV).